Archive for the ‘Travel’ Category

h1

Observing Report: Total solar eclipse on August 21, 2017

August 28, 2017

My parents, Norma and John (seated), and me with London and Vicki (standing), with the projected eclipse.

Long Range Planning

Since the August, 2017, eclipse first came on my radar, my plan was to see it from somewhere on the Great Plains. I had two reasons for this. One, most of my family lives in Oklahoma, and it would be simpler for them to drive up to the eclipse path than to fly to somewhere more remote. Also, on the plains you can usually see weather coming from a long way out, and fronts move in predictable ways. I figured that if clouds did spring up on eclipse day, I’d have a better chance of driving to get around them on the plains than anywhere else.

Originally I’d been thinking Kansas or Missouri, both of which border Oklahoma and would have made short drives for my relatives. But a closer look at the eclipse map this spring dissuaded me. The eclipse would only barely clip the northeastern corner of Kansas, in the relatively densely populated area around Kansas City. The path of totality painted a broad stripe across Missouri, but mostly along a line connecting Kansas City and St. Louis. I figured that area would get hammered by visitors, and the cloud forecast wasn’t as favorable as it was for points west, either.

Map by Xavier Jubier/Eclipse2017.org

Nebraska, on the other hand, looked pretty good. My maternal grandparents used to live in Imperial, in the southwest corner, and they retired just a few miles down the road to Enders. Imperial would make a convenient rendezvous point, both for any family driving up from Oklahoma, and for me, Vicki, and London flying in from California.

In one sense Imperial was not convenient: it’s a long way from any major airport. Two hundred miles from Denver, and three hundred from Lincoln. But I like long drives in the country (really, I do!), and I was happy to trade some driving at either end of the trip if it would save me traffic in the middle.

I guess now is a good time to mention that I did not want to stay on the path of totality. I figured – correctly, as it turned out – that competition for rooms would be fierce, that at least some places would be gouging visitors, and that traffic would be a problem in at least some areas. Instead, I wanted to stay an hour or two off the path of totality, preferably somewhere out of the way, where crowds would not be a problem, but I’d still have a range of possible observing spots within easy driving range. Again, Imperial was a promising choice, and in early February, I called and reserved rooms for my parents and for Vicki, London, and me at the Balcony House Bed & Breakfast (which was outstanding, by the way – it’s worth going to southwestern Nebraska just to stay there).

By now, plans were firming up. I knew that the fall gross anatomy course at WesternU would be rolling by eclipse time, and Vicki and I would need to arrange things so we’d miss as few days of lab as possible (many thanks to our department chair for the time off!). But we also wanted some time in Imperial to unwind, and to visit places important to our family history. That meant leaving on Saturday, August 19, and coming back on Tuesday, August 22. The Balcony House didn’t have any rooms on Saturday night, and in fact, nobody else in Imperial did, either. So we decided to make Saturday an easy day and only drive as far as Holyoke, Colorado. Holyoke is another old family stomping ground – Grandpa and Grandma had lived there for several years, too, and it’s where my mom grew up.

Sun funnel testing in Claremont

The Sun Funnel Rides Again

Gear! I didn’t settle on exactly what I’d be rolling with until Thursday, August 17, just two days before we were to fly. My old Sun Funnel – veteran of the annular eclipse and Venus transit of 2012 and the partial eclipse of 2014 – was in storage in the garage. There was never really any question but what it would be going along; it’s just too darned useful for showing solar events to even small groups of people. I did have to decide which scope to use with it. We’d sold London’s AstroScan, but my flock of airline-portable scopes had grown in the meantime. Strong contenders included the GalileoScope, Tasco-Vixen 9VR, and SkyScanner 100. I set up and tested the 9VR and the SkyScanner, and I ended up going with the latter scope, for several reasons:

  1. It has the most aperture of any scope I was seriously considering.
  2. It’s at least somewhat collimatable.
  3. With its open design, I wasn’t worried about it overheating.
  4. It balanced the best with the Sun Funnel mounted.

For the flights, I put the SkyScanner in the padded bag that my Apex 127 came in, and packed t-shirts and socks around it. The Sun Funnel I broke down – I put the screen material in a folder between sheets of clean paper, and I stuffed more socks in the funnel itself. I also brought along four pairs of eclipse glasses, a piece of #14 welder’s glass (previously seen here), and 10×42 Bushnell binoculars to look for solar prominences during totality.

London with his grandparents in front of the Balcony House in Imperial, Nebraska

One more piece of gear came to me on the road. Sunday morning we woke up in Holyoke, Colorado, had lunch at The Skillet (which had excellent country cooking), and then popped across the street to the Family Dollar for a few odds and ends. I’d been thinking of making a little sun-finder, like the one David DeLano detailed in this post. My SkyScanner has a DIY wooden bracket that is square to the tube, so I just needed something round that I could use to project a spot of sunlight. I ended up going with a $1 empty condiment bottle, which I already blogged about here. When we rolled into Imperial that afternoon, I unpacked all of the gear and did a test run on the sidewalk in front of the Balcony House. Everything was ready – now we just needed clear skies.

Targeting on the Fly

My initial targets for possible eclipse observing spots were the towns of Tryon and Stapleton, Nebraska, both about a half an hour north of North Platte. I picked up a Nebraska road map and highlighted possible routes from Imperial to either Tryon or Stapleton, going either north to the path of totality and then east, or vice versa. Either town would have required about 2.5 hours of driving on a regular day, and I figured it would be smart to budget for eclipse traffic. The east-then-north route to Stapleton had the following problem: it went through North Platte, and if traffic was apocalyptically bad, we might get stuck on the edge of the path of totality, or even outside of it. The north-then-east route to Tryon would get us close to the centerline first, with fewer opportunities to get stuck off the path.

Ah, but then. A few days out, and the weather apps were predicting partial clouds and possibly even rainfall for west-central Nebraska. Right up until Monday morning, North Platte, Tryon, and Stapleton all looked they might get clouded out. So Sunday the five of us – Mom, Dad, Vicki, London, and me – had a council of war. To the level of detail possible in weather prediction, the area around North Platte looked lousy, but Scottsbluff, in far western Nebraska, was supposed to have sunny skies. Between North Platte and Scottsbluff, the weather looked progressively better to the west, and worse to the east. So we changed things up: instead of turning east to Tryon or Stapleton, we’d stay on Highway 61 north out of Ogallala and shoot up to Hyannis, then turn west on Highway 2 and go as far as we needed to find clear skies. This was basically the Tryon plan with the directions reversed: go straight north to the eclipse path first, then drive east or west along the path to a promising destination.

The Drive Up

I wish I had had the time and opportunity to take pictures during the drive up from Imperial. It was beautiful. We left Imperial right after dawn, and the rising sun turned the fields to gold. Within a few miles, we could see banks of fog lying in the low spots on the landscape. And then a few miles further, the fog was lying everywhere. We started driving through fogbanks that congealed into an unbroken blanket by the time we reached Ogallala. The weather apps were still projecting clear skies to the west and, well, unclear skies to the east, so we kept going.

The fog had cleared by the time we saw our first eclipse-watchers, at the fairgrounds in Arthur. There were hundreds of people in RVs, tents, cars, and trucks, looking worriedly up at a sky that was completely socked in with clouds. We kept going, and saw a few hundred more scattered along the side of the road as we approached the center line. About this point we hit what I can barely bring myself to describe as ‘traffic’. At its worst, we were the 9th and 10th vehicles in a convoy of 13, but the convoy was rolling along at a steady 62 or 63 miles per hour, which was fine and certainly not worth the risk of trying to pass someone on a two-lane road in the Nebraska sandhills. The hills themselves were liberally spangled with wild sunflowers. From a distance, they looked like they’d been dusted with pollen. Everywhere we went the landscape was green.

Alliance

From a purely eclipse-viewing perspective, I would have been happy with any of the towns on Highway 2 west of Hyannis. Sure, they were a few miles off of centerline, but the difference in the duration of totality would have been trivial. And I figured we’d miss the big crowds expected at Alliance. But this plan had one fatal flaw, which I did not anticipate: a complete absence of public restrooms west of Hyannis. If I’d been by myself, I might have just pulled over anywhere and, er, recharged the water table as needed, but that’s a less attractive option to a group that includes two women and two senior citizens. Actually, there may have been a public restroom in Lakeside, but we had no chance to find out, as there was a big train blocking the road into town when we came by. So we headed on into Alliance and braced for the worst.

Our setup at the Western Nebraska Community College shindig. The forest of telephone poles in the background is where line repair people train.

The worst turned out to be not that bad, actually. We drove past a big group assembled on a grassy field on the east edge of town, and on to the first gas station that looked like it might have restrooms. By the time we’d all had a biology break, it was almost time for the eclipse to start. We decided to head back out to the east edge of town and see if the group on the grass still had some parking spots. This turned out to be an excellent choice. The parking was organized by the Western Nebraska Community College, which had free porta-potties and eclipse gear for sale. We ended up next to a family from Denver that we had met in line at the gas station. They all had eclipse glasses but no other optics, so I set up the Sun Funnel so they could watch with us, and they returned the favor by taking pictures of our party.

The Eclipse

As soon as we had the cars parked, I was busy setting up the Sun Funnel, while everyone else got folding chairs set up and got their eclipse glasses on. I got the photo above, my first shot of the eclipse, at 10:45 AM.

There was a wind out of the north that kept threatening to snatch our hats away, and it was flirting with blowing the scope over. I can’t remember ever setting up the Manfrotto tripod for low use, with the legs spread almost straight sideways, but I remembered from the documentation that doing so was possible. That fixed the stability issues with the scope, and from that point on, all we had to do was re-aim it every few minutes (I’d already made this switch in the family shot above – that shot is out of order in terms of eclipse phases). As I mentioned in a previous post, not only was the dollar store mustard bottle sun finder cheap and effective, but I could see the projected dot through the translucent walls of the bottle so I didn’t have to get my head behind or underneath it to aim the scope – handy when the sun was almost directly overhead.

A labeled shot from the end of the eclipse, when all six of the big sunspots were visible, with the Earth added for scale. All of the other crud on the image is dirt and bits of grass – that’s what happens when gear is left out in the wind in a grassy field for three hours.

There were half a dozen nice sunspots, and it was fun to watch the moon overtake them. A lot of the people who stopped by to look at the sun funnel weren’t familiar with sunspots, so I gave them the quick spiel: giant magnetic storms on the sun, with the biggest that we could see then being about the same size as planet Earth.

About halfway between first contact and totality, the north wind started pushing clouds across the sky, which you can see in the above video. This added some definite suspense to the proceedings, especially when, about 5 minutes before the start of totality, a huge “dreadnought class” cloud came over. I think everyone on the field was on pins and needles – we could still see the sun, as the next photo demonstrates, but it wasn’t what you’d call a great view.

Fortunately the cloud moved out of the way right at the start of totality. And I mean precisely then. Below is a shot from just a couple of seconds before, with the diamond ring effect haloed by the tail-end wisps of cloud. Those wisps moved out just as the moon covered the last light of the sun, and our view of totality was perfectly clear.

That photo above is my best eclipse shot. Vicki has a DSLR but I didn’t take it along. I did waste a few seconds, but only a few, trying to get a couple of HDR shots with my iPhone, but they didn’t really come out. I had read plenty of horror stories of people who basically missed their first eclipse messing around with cameras, so I resolved long ago that if I was lucky enough to have clear skies for totality, I’d try to spend them looking, not shooting.

For the most part, the partial phases of the eclipse were familiar to me from the 2012 and 2014 eclipses. Totality was a whole ‘nuther beast. This was my first total eclipse, and even though I had read a lot of eyewitness reports and seen some videos of other total eclipses, several things surprised me:

  1. Neither of my previous eclipses had been close enough to total to produce the weirdly sharp shadows that you get on either side of totality, when the thin crescent sun acts more like a point source than a bright extended object. So I’d never seen that effect before, and neither had anyone that I was with. We had fun marveling at our shadows, but I didn’t think to get any pictures or video of them. You can see the sharp shadows starting at 1:25 in this video.
  2. It got a lot darker a lot earlier than I expected. This was especially true in the last 10 minutes before totality. It was extremely weird – before the dreadnought cloud moved in, we were all aware of standing in direct sunlight, just not much of it. It wasn’t like diffuse sunlight coming through clouds, and it wasn’t like sunset light, either. I’ve never seen anything else quite like it – which I guess is part of the reason people chase eclipses, to see things you can’t see any other way.
  3. The inner corona was a lot brighter than I expected. I couldn’t really see any of the outer corona, just a thin bright ring around the moon. It was bright white. The contrast between the blazing white of the corona and the absolute blackness of the moon made the latter even more unearthly. In Seeing in the Dark, Timothy Ferris described the moon during totality as an “awful black ball” and I can now vouch for the accuracy of that description. It doesn’t look right.
  4. Even at the midpoint of totality, the sky was brighter than I had thought it would be, and the ground was darker. We all did look up, and saw Venus, Mars, Mercury, and Regulus, but I didn’t see any other stars; the stars didn’t ‘come out’ as I had expected. In contrast, right where we were, looking around at family members and other eclipse chasers, it was dark, like being outside half an hour after sunset. And the 360-degree twilight lit the horizon all the way around in shades of orange, salmon, pink, and violet. In general, the terrestrial effects of the eclipse were more pronounced and arresting that what was going on in the sky – with the undeniable exception of that awful black ball.
  5. I assume that the atmospheric effects on either side of totality are symmetrical – that the weird light I mentioned above in point 2 extends just as far after totality as before, and that the 360-degree twilight extends just as far before totality as after. But that’s not how I perceived them. I noticed the oddly thin light before totality, and after totality had ended I was surprised at how long the sunset effect persisted. The above photo is from a minute and a half after the end of totality, looking north-northeast, about 90 degrees off the path of the shadow, and the twilight effect is still visible in the distance.

After Totality

Totality was a rush. In the aftermath we sat around talking happily about how amazing it had been, and watching on the sun funnel as the moon gradually uncovered the sun. London and I made pinhole projections – his is above, mine below.

We also wandered around until we found a cottonwood that was projecting crescent suns on the street. Here’s a photo:

And a video – this worked out better than expected, because the wind was blowing the leaves and branches around and making the crescent suns flicker, like sunlight glinting off moving water. Shame I didn’t think to turn the phone sideways, but I’d just had my mind blown, so I’m giving myself a pass.

All too soon it was winding down. The telescope and sun funnel had been the first things set up when we rolled in, and they were the last things put away when we left. Here’s my last shot, from 1:16 PM:

Ironically, after all the gloomy predictions, traffic was worse getting away from the eclipse than it had been getting to it. I’d hoped that maybe we could head south out of Alliance and fast-track it back to Ogallala on Highway 26, but that way was jammed up. So we went back the way we came. On the drive home we were the 5th and 6th vehicles in a train of 17, and we had to settle for a bit under 60 mph, but we still made it back in good time. There was another train blocking the access into Lakeside, so I still don’t know if the town has a public restroom.

The trip had one neat little coda. On the flight home, London had the window seat, and he spotted the young crescent moon, back in the evening sky after its big adventure. I passed him my phone, and he got some great shots. Here’s the best:

What now?

There will be other solar eclipses between now and the next “Great American Eclipse” of 2024, but most of them will happen in other parts of the world, and the chances that I’ll have the opportunity to go see them are slim. Here are the upcoming eclipses and transits that I am hoping to observe in the next decade – as always, assuming the skies cooperate:

  • January 31, 2018 – total lunar eclipse
  • January 21, 2019 – total lunar eclipse
  • November 11, 2019 – transit of Mercury
  • May 26, 2021 – total lunar eclipse
  • May 16, 2022 – total lunar eclipse
  • November 8, 2022 – total lunar eclipse
  • October 14, 2023 – annular solar eclipse
  • April 8, 2024 – total solar eclipse
  • March 14, 2025 – total lunar eclipse
  • March 3, 2026 – total lunar eclipse

That’s a pretty good lineup, I think. For more details on all of these events, see MrEclipse.com.

In sum, the eclipse was awesome, in every sense of the word. I get now why people become eclipse chasers. I’m not quite to the point where I can afford to go jetting around the world to catch every single one, but I will make it to every future eclipse that I can. If you ever get a chance to stand in the path of totality, go.

UPDATE 29 August: Mike’s comment below about Cthulhu reminded me that I needed to post another picture. After I put the diamond ring photo on Facebook, my friend Jarrod posted this modified version, which I can’t unsee. Cower before Ecl, the Dragon of Totality:

Eclipse dragon

Advertisements
h1

Deep in the Dark of Texas: the Three Rivers Foundation Messier Marathon

March 28, 2017

This story starts with Jeff Barton, Director of Astronomy at the Three Rivers Foundation for the Arts and Sciences (3RF). Jeff sent me a Facebook message on January 27, inviting me to come speak at the 3RF Messier Marathon star party, for which 3RF would pay my travel expenses and provide food and lodging.

I did not get this message until February 19, because I suck at Facebook. Fortunately the offer was still open. So last Thursday I flew to DFW, rented a car, and drove out to the Comanche Springs Astronomy Campus, a little west of Crowell, Texas.

3RF is an educational foundation and Comanche Springs is the North American astronomy wing (they also have scopes in Australia for public education and outreach). It’s out in rural Texas ranchland, and as you drive up the first thing your eyes will light on is the big silver observatory dome.


Inside the dome is a 15″ refractor with DGM optics, an OMI tube, and a monster Astro-Physics mount.


There are several roll-off roof observatories on the campus, with more to come in the near future. This one holds two imaging scopes, a big Ritchey-Chretien on the left and a big SCT on the right, both on Software Bisque Paramounts. These are set up for remote observing – in the near future, schoolteachers will be able to tie into these telescopes and collect images with their students.

Irritatingly, I didn’t get any pictures of the big roll-off roof observatory which holds one of 3RF’s 30″ Obsession dobs, and where they park the two 20″ and one 18″ Obsessions when they’re not in use. That’s right, four 18″ and larger Obsessions in one place. They have more stored in town, waiting for more observatories to be built, and another gaggle of Obsessions in Australia.


In lieu of a picture of the Obsession shed, here’s a view of the north end of campus, looking east. From left to right you can see one of the four or so bunkhouses in the background, the ‘new’ classroom/mess hall, the equipment shed where the binocular chairs are stored, and the restrooms, and one of the observing fields in the foreground.


Here’s one of the motorized binocular chairs. You sit in the padded seat and drive yourself in altitude and azimuth with the joystick on the right armrest, while the Fujinon 25×150 binoculars deliver 6″ of unobstructed light-gathering to each eye. There’s another chair with a more modest but still impressive 100mm bino, and I believe a third chair that wasn’t out during my visit.

The tagline “Deep in the dark of Texas” is not my original, I got it from the back of a 3RF t-shirt. It’s true. The skies at Comanche Springs are dark. Seriously dark. You drive through a section of open range to get there. I had to get a picture of this brown cow sitting by the side of the road – this cow refused to be fazed by anything. I grew up in rural Oklahoma and in my experience, free-range cattle are highly correlated with dark skies. The skies at Comanche Springs are Bortle 1 or 2. The only places I have been under skies this dark are Afton Canyon, the All-Arizona Star Party, and the remote desert of southern Utah. More than 200 miles west of the DFW metroplex, and 20 miles from the nearest town of more than 1000 people, there are no light domes on the horizon – none.

I roomed with these fine gentlemen. You may know Robert Reeves from his several books on astrophotography (see this page) and from his “365 Days of the Moon” on Facebook, which has now been running for more than two years. David Moody is a Fellow of the Royal Astronomical Society (yes, the one in London, co-founded by Herschel) and one of the authors of Astronomical Sketching: A Step-by-Step Introduction. Lonnie Wege is a sales manager at Celestron and brought the door prizes, which were donated by Celestron.

To be in the company of such experienced observers and imagers was a real privilege, but it was only intimidating for the first 30 seconds or so because they’re all so nice. In Seeing in the Dark, Timothy Ferris describes hanging out at the Winter Star Party: “I listened to the elders talk – a mix of astronomical expertise and self-deprecatory wit, the antithesis of pomp.”  That’s what it was like for me at the 3RF star party – just a bunch of regular folks, all equally willing to share and learn, all equally excited for nightfall.

I got in Thursday evening but didn’t do much observing. It was cold and windy, and then cloudy. I did spend a few minutes out in the lee of one of the bunkhouses cruising the sky with binoculars, and I figured out an easy hack for hanging my red headlamp over my bunkbed, but that was about it. Incidentally, my headlamp is already red, but like almost all red-light accessories marketed toward amateur astronomers, it’s still too darned bright. Usually I have a layer of masking tape over the front to knock down the brightness, but for some reason I pulled it off recently. Fortunately they had plenty of red taillight tape in the 3RF coffers, so I got it back into fighting trim.

On Friday I visited the elementary and middle schools in nearby Quanah, Texas, with 3RF’s Director of Education, Townly Thomas. Townly visits schools in a 100-mile radius from Quanah to bring enhanced STEAM (Science, Technology, Engineering, Arts, and Math) activities to kids. I know she’s popular because I heard one student call to her as we walked down the hall: “Mrs. Thomas, when do we get to do STEAM again?” I went in my capacity as professional paleontologist and brought some fossil casts for the students to see. Pictured above are the thumb claw of Saurophaganax, a big allosauroid from Black Mesa in the Oklahoma panhandle (more about that here), and the skull of Aquilops, a little ancestral horned dinosaur that I got to help name in 2014 (ditto). Many thanks to my friends and colleagues at the Sam Noble Oklahoma Museum of Natural History for making the casts available – I’ve had fun introducing them to lots of schoolkids.

After the school visit, I got on the road back to Comanche Springs – I didn’t want to miss the talk by Robert Reeves on his lunar imaging. Here’s a  handful of the many things I learned from Robert:

  • He uses a 180mm SkyWatcher Mak to get his moon images these days. Runs his camera at 50 frames a second for 100 seconds to get 5000 frames, stacks and saves only the best 500, and then does a LOT of careful, thoughtful processing.
  • Lunar shadows are jet black, not gray. If you see gray shadows in someone’s moon images, they need more processing.
  • The lunar Bay of Rainbows is Sinus Iridum, not Sinus Iridium – no third ‘i’. I have been misspelling and mispronouncing it for a decade.

Now, this was a Messier Marathon star party and there were rules and checklists and everything – more on that later in the post. I think that originally Friday, Saturday, and Sunday nights were all fair game for the contest, but Friday night turned out to be suboptimal. We did get a lovely sunset, as you can see above, but those clouds were pushed on through by a strong, cold wind. Instead of setting up scopes ourselves, many of us retreated inside the dome to observe with the 15″ refractor. We also had a group of 15 or 20 college students visiting, so we all took turns looking through the big refractor. They’d already been going for a while when I got inside. The first object I saw myself through the big scope was the globular cluster M3. Then we looked at M51, the Whirlpool Galaxy, and then Comet 41P.

I haven’t blogged about the comet yet, but it is easily visible in binoculars under dark skies, and with any luck it may get naked-eye visible in the next week or so. I haven’t checked to see if it’s visible from Claremont – I was too pooped after I got home last night. I saw it every night in Texas, but I haven’t sketched it yet. Hopefully I’ll get that done soon. In the meantime, Sky & Tel has a good finder chart that will carry you through the end of April here.

After the comet, we looked at the galaxies M102, M82, and M104, and the globular cluster M13. I might have missed an object or two – I popped outside to call home, and spent some time in the attached classroom warming up and getting to know some of my fellow stargazers. I know we went to Jupiter at some point, and we back to Jupiter at the end of the session to catch the start of an Io shadow transit.

I slept in on Saturday and did some final tinkering on my talk. David Moody gave a talk before dinner about visiting the Royal Astronomical Society library and getting to see first editions of books by Copernicus, Newton, Bode, Bayer, and more.

After David’s talk we had dinner and door prizes in the mess hall. Here Jeff Barton (right) is pointing past Fred Koch, who was drawing names, to accuse Lonnie Wege (left) of something. It was all in good fun and there was plenty of laughter, especially when Phil Jones won the grand prize – 15×70 SkyMasters, just like mine – in absentia, having been out setting up his imaging gear. When he came in, Lonnie told him that all he had won was the case, and the binos were going to someone else. Well, binos did go to someone else (whose name unfortunately escapes me), but he had already won 10×50 binos so he kindly donated the 15x70s to Phil. This is Phillip L. Jones of VisualUniverse.org, by the way – you’ve probably seen his photos in books and magazines.

I won a door prize myself – a rechargeable hand warmer. I ran over and plugged it in after dinner so it would be ready to go by marathon time. I was very glad to have it later on.

Saturday night was looking much, much better. There were a few clouds low on the western horizon, but everyone who had come to Comanche Springs to observe or image was getting ready. Here are Glenn Winn in the foreground setting up his 17.5″ Discovery dob, and Jim Admire in the background with his XT10g. Just out of the frame on the right was Jay Ellis and his own XT10.

I set up just south of Jay, and the four of us were the biggest group of visual marathoners. Phil Jones had his imaging rigs set up about 100 feet south of Glenn. There were more imagers on the south observing field, by the Obsession shed, and at least two serious visual observers: Tom Monahan and Russ Boatright (there may have been more, but Tom and Russ are the two who came to the awards ceremony on Monday).

I don’t remember what scope Tom was rolling with, but Russ impressed the hell out of all of us by going super-minimal: he did a naked Messier Marathon from Memory. Not naked as in unclothed, but naked as in, not even with a list of the objects. In a regular M-cubed the observer is allowed no charts – they have to find all of the objects from memory, hence the name. In a naked M-cubed, the observers is not even allowed a list to remind them what to look for, it’s just them and their instrument. Russ ran his naked M-cubed with Canon 18×50 image-stabilized binoculars.

Saturday night’s marathon was great. There were clouds low in the west again, and none of us got M74. But the clouds blew through quickly and after that it was clear, dark skies all night. I was rolling with the Bresser AR102S Comet Edition and Fujinon 7x50s I had borrowed from 3RF. I’d actually flown in with my own binoculars, the Bushnell 10x42s that I had out at Santa Cruz Island last June, but the 7x50s gave a wider, brighter image and were more in line with my current fascination for low-power, wide-field uber alles. I would have brought the Bresser 7x50s that came with the Comet Edition package, but I ran out of room in my backpack – the Bushnell roofs take up about half the space.

And speaking of space in my backpack – I managed to fly with carry-on luggage only. A red duffel bag held the Bresser OTA, Manfrotto tripod, DwarfStar alt-az head, and big dinosaur claw, with my clothes wrapped around everything as packing material. My backpack had a couple more shirts, my laptop, travel paperwork, notebook, Pocket Sky Atlas, binoculars, boxed Aquilops skull, shaving bag, and Bob King’s new book Night Sky With the Naked Eye, which I’d gotten specifically to read on the plane (expect a review soon). Both bags were stuffed nearly to bursting, but they were both within carry-on allowances and the backpack still fit under the seat in front of me.

Oh – rules. There were five categories: Young Astronomer, GoTo Telescope, Non-GoTo Telescope, Binoculars, and Highest Aggregate Score. No-one has ever gotten all 110 objects in one night at a 3RF marathon, so the highest aggregate goes to the person who gets the most over the course of two nights. If there’s a tie in the number of Messier objects, the bonus points kick in. Herschel 400 objects were worth two points apiece, and there was an ascending scale of more difficult dim objects, including Hickson Compact Groups of galaxies.

Here’s my log from Saturday night. Although I missed M74, I tried to make up for it by nailing as many H400 clusters in Cassiopeia and Perseus as I could. By the time I took my first break at 10:15, I had 27 Messiers and 16 H400s. I took several short breaks over the course of the evening to get snacks and caffeine and chat with people. It all went pretty smoothly until just before dawn, when I was trying to catch M30. I star-hopped down from Deneb Algedi (aka Delta Capricorni) to the right vicinity and found myself looking at trees. They were only small trees, and probably 200 yards from the observing field, but they still obscured those last few crucial degrees above the horizon. I’d picked a bad spot.

What I should have done is pick up the binoculars and walk south until I could see the target star with no trees in the way. What I actually did was pick up the scope and chair and run south and set up where I thought I’d be in the clear, only to star-hop down again and see other, different trees – I’d gone too far south. So I moved everything yet again, and by the time I got on target, the sky was getting bright. Fooey. Still, I got 108 objects, tying my personal best from 2013, which was actually the last time I’d even attempted a Messier marathon, so I couldn’t be too unhappy.

As it happened, I tied with Glenn Winn that night. He’d missed M77 in the early evening, but gotten M30, so his list of 108 objects was slightly different than mine but came to the same total.

Anyway, I went to bed happy. Got up for lunch on Sunday, then slept some more, then got up for another talk by Robert Reeves. Robert’s second talk was also on the moon, but focused less on his imaging methods and more on the processes that have shaped the moon, and the moon’s changing appearance under varying conditions of light and shadow. It was incredible stuff – I took a whole page of notes to guide my own future moon-observing.

Sunday night we had clearer skies than Saturday, but it was colder and a brisk north wind was blowing not long after dusk. None of us got M74. Down at the Obsession shed, folks were looking for it with even bigger scopes and failed to see it, so I’m confident it just was not visible that night. Possibly that was atmospheric, but the zodiacal light certainly didn’t help – it was a broad dagger of light stabbing up vertically from the horizon all the way to the Pleiades. I have never seen it so bright.

The other thing that shaped my Sunday night plans was the fact that Glenn did get M77, bringing his aggregate Messier total to 109. All of my bonus points from H400s would only help in the event of a tie, and the only was I could tie him was to get M30. And without M74, there was no chance for me to achieve my personal goal of getting all 110 Messiers in one night. So I needed to be up before dawn to try for M30, but there was no point in subjecting myself to a whole night of observing in the windy cold. I packed up the scope and moved into the lee of Jeff Barton’s camper and switched over to binoculars. I was still using the 3RF Fujinon 7x50s.

It was another Fujinon binocular that would provide the most memorable views of the evening: the 25×150 motorized bino chair. 3RF volunteer Gary Carter had set up the bino chairs and was touring people around the sky on Saturday evening, but I was too busy marathoning to partake. Sunday night I hopped in the big chair, Gary got the binos adjusted, and I was off.

In a word – WOW. I have been fortunate to get to observe with a lot of big telescopes, but I am not exaggerating when I say that using that bino chair was my favorite observing, ever. I just sat there comfortably in a padded chair and drove myself around the sky with the joystick, while enjoying hands-down the brightest, most immersive, most enjoyable views of the night sky that I have ever had. Six inches is a lot of light-gathering per eye. I don’t know the AFOV of the eyepieces but it is wide. It’s hard for me to even believe that the magnification was only 25x – everything subjectively seemed much bigger, because it was so much brighter and more detailed than I am used to. When I was cruising over to look at the Double Cluster, I kept getting distracted by all of the little open clusters that dot the Milky Way in and around Cassiopeia (I was coming in from the north). M78, near Orion, was so big and bright that at first I thought I had the wrong object.

In summation, observing with the Fujinon bino chair was a transformative experience – it changed my perspective on what observing could BE.

I knocked off a little before midnight with 60 Messiers in the bag, and went to get some sleep. I didn’t get up until 5:30, and I wasn’t back out on the observing field until 5:45.

I have read many accounts from observers under dark skies who said that when the summer Milky Way rose, it was so bright that they mistook it for a cloud. I had not previously experienced that for myself. But Monday morning I was headed out of the bunkhouse and I saw a bright, white cloud in the eastern sky. We’d been fighting the occasional cloud every other night, so when I saw that cloud out of the corner of my eye I thought, “Aww, crap, I need clear skies to get M30”. But when I turned my head to see how big the cloud was, and how extensive, it turned out to be the Milky Way in Sagittarius and Scutum. I should have known better anyway – Comanche Springs is so dark that actual atmospheric clouds aren’t bright, but dark. They show up as blank spaces in the starfields.

I didn’t get M30. I got the scope correctly placed this time, and I got to the target star, and I spent about 15 minutes alternately adjusting the zoom eyepiece and staring into the darkness. A couple of times I thought I saw something, but I couldn’t even hold it in averted vision, so it could well have been a case of averted imagination. Anyone who has pushed their gear to its limits in the search for faint fuzzies will know the feeling. There are the things that you see repeatably in the same place, with the same orientation, that you log as detected – and then there are things that never swim up out of the minor variations in background darkness that your retina throws up when confronted with a blank slate. M30 never surfaced for me.

Ah, well. I did get 25 more Messiers with the 7x50s between 5:45 and 6:05. It helped that I had seen them all the previous morning with the telescope, so I knew exactly where to look. I probably could have gotten a few more, like M2, if I hadn’t been so fixated on M30. But 85 Messiers in one night with 7×50 binos is not a bad total at all, especially not when I got a 5.5-hour break in the middle.

I was too keyed up to go right back to sleep, so I went into the observatory classroom, made myself a Frito pie with a microwave bowl of Dinty Moore Beef Stew – which was awesome, by the way – and copied my results over from my personal log to the 3RF competition forms. Then I went back to sleep for a couple more hours.

We all reconvened in the observatory classroom around 10:00 for the final tally and presentation of awards. Here’s the scoreboard:

The highest aggregate total went to Glenn Winn, with 109 objects over the two nights. I got second in the Non-GoTo category, behind Glenn, and also got second in the Binocular category, behind Russ Boatright. In his naked M-cubed with the 18×50 bins, Russ got a staggering 90 objects. Color me impressed – very impressed. Jim Admire got 91 objects with his XT10g, and that was without pushing through dawn, so he won the GoTo category. Tom Monahan wasn’t even going to turn in his sheet, figuring that his 47 objects from the first half of Saturday night would not qualify him for anything. But a lot of people who signed up didn’t turn in any results, so Tom got the pleasant surprise of third place in the Non-GoTo category. I think the Young Observer awards went unclaimed, as no actual youngsters participated in the marathon.

Here’s a shot of the winners’ circle. From left to right are:

  • Jeff Barton, our host and the competition judge;
  • Glenn Winn with his 1st place medal and aggregate score trophy;
  • Russ Boatright;
  • Jim Admire;
  • yours truly, and;
  • Tom Monahan.

Many thanks to 3RF volunteer Gary Carter for taking the photo, and for permission to use it here.

A good time was had by all, and plans are already being laid for next time. Turns out that Jeff Barton is a fan of double stars, and he visibly lit up when I brought the idea of a Double Star Marathon to his attention. Something like 80 globs are visible in the fall during fall Messier Marathon season, so some kind of glob marathon may be in the offing in the near future as well.

I learned some things about my gear, too. The Bresser/Manfrotto/Dwarfstar rig was utterly uncomplicated, as I suspected from my test run at the Salton Sea the previous weekend. Rarely have I had more effortless and trouble-free observing. And I’m proud to have gotten 108 objects in one night with a 4″ scope – I don’t think there’s any shame in losing to a 17.5″ reflector, nor to an observer as experienced and friendly as Glenn. I might even have ‘sold’ a few of the Bresser Comet Edition packages, as there was a lot of curiosity about the scope among the star party attendees. I think Jeff Barton may have ordered one yesterday morning.

Is a 4″ reflactor enough scope for a Messier Marathon? It wasn’t this time. I’m not hurt about not getting M74 – if people with 17″ and 18″ dobs couldn’t see it, then conditions were just not right for it to be seen, period. M30 is more troubling. I know for dead certain that I was pointed at the right place, and I tried every trick in the book – averted vision, tapping the tube, slowly sweeping – and still couldn’t get it to pop out, and this was from its rising onward. But I know it was visible in bigger scopes. Sure, it will be a few degrees higher by the end of the month, but M74 will be a few degrees lower, too.

Now, I know that people have gotten all 110 Messiers in one night with even smaller scopes. According to this analysis by A.J. Crayon, hosted at the SEDS Messier site, it has been done with a 60mm refractor. That is darned impressive. So theoretically, yes, under perfect conditions, a 4″ scope is more than enough. But your chances improve with bigger scopes. Still, even a 17.5″ scope wasn’t enough to get all 110 this time, at this site. And it is worth noting that I’ve now done just as well with a 4″ scope as with my Apex 127, having gotten 108 objects in one night with both instruments.

Flying with the Bresser Comet Edition turned out to be surprisingly easy. I got scope, tripod, alt-az head, and clothes for five days into a standard duffel bag. The likelihood of this scope racking up more airline miles in the future is very high. And the 28mm RKE and 8-24mm Celestron zoom were all the eyepieces I needed. I didn’t use a finder of any kind – I didn’t take my green laser pointer for airport security reasons, and I forgot to borrow one from Jeff (who did offer) before the marathon started Saturday night. But it was okay, I just did my dead reckoning trick and didn’t even think about it after the first few objects. On the flip side, I did wish for a different atlas. I really need to suck it up and take the Jumbo PSA next time. At 4:00 in the morning when my eyes are tired and I’m trying to read by the dim light of a red headlamp, the writing in the standard edition is just too small.

I have new ambitions about gear – mainly, that I gotta get me some big binoculars. Frequent commenter and sometime observing buddy Doug Rennie has 20×80 bins that he mounts on one of these – that would be a potent and enjoyable combo for a very reasonable outlay (although I see that the price has crept up from the $65 or so it was going for last year). And my new no-holds-barred, price-is-no-object dream observing rig – which I may never achieve – is a motorized chair with 150mm binoculars. It was that good.

But ultimately the star party was not about gear, it was about experiences. I had a fantastic time at Comanche Springs, saw amazing things in the sky, learned a lot from my fellow amateurs, and most importantly made a lot of new friends. Many thanks to Jeff Barton and the whole 3RF crew for their hospitality and for making my trip possible. I don’t know when I’ll be back out there, but I’m already looking forward to it.

For more about Messier Marathons, including log sheets, links, and observing reports from previous marathons, see this page.

h1

My 9.5-pound observatory

June 27, 2016

IMG_0310

In the last post I introduced my new small scope, the PICO-6 60mm Mak-Cass. After having a positive first light, I decided the scope was good enough to be the center of a new travel observing kit. Here’s the scope mounted on a Universal Astronomics DwarfStar alt-az head and a Manfrotto CXPRO4 Carbon Fiber Tripod.

IMG_0307

Here’s the kit broken down. The case is an AmazonBasics Medium DSLR Gadget Bag, which Doug Rennie helpfully put me on to. The Pocket Sky Atlas and small Night Sky planisphere go in the back pocket. In front of the bag from left to right:

IMG_0305

Here’s everything packed away. This was just a first pass. The final arrangement I came to is as follows:

  • The left-hand slot holds the DwarfStar head with the handle removed and stowed separately, as shown here, and the 6mm eyepiece in its cardboard box, wrapped in a small piece of bubble wrap.
  • The middle slot holds only the PICO-6 OTA, just as shown here.
  • The right-hand slot holds the 32mm Plossl and the 8-24mm zoom eyepiece on the bottom, both of them in the beige metal cases that the zoom eyepieces come in (I had a spare). The tops of the two cases form a horizontal shelf which holds the diagonal, wrapped up in a small drawstring bag.
  • Finally, a piece of bubble wrap goes across the tops of all three slots and gets tucked in at the edges and corners.

Oh, the vertical dividers in the case are held in with velcro so they can be adjusted or removed as needed.

IMG_0303

For flight, the tripod can go in a backpack or in checked luggage, and the AmazonBasics case goes as my carry-on “additional item”. The tripod weighs 3.5 lbs, the fully-packed case weighs 6. For a total of 9.5 lbs, I have a full-size tripod, a smooth, variable-resistance alt-az head, eyepieces giving magnifications of 22x, 29-88x, and 117x, a scope which will show the Cassini Division and split Epsilon Lyrae, a planisphere, and a mag 7.6 all-sky atlas.

Oklahoma dig

This past week I was out at Black Mesa, at the northwestern corner of the Oklahoma panhandle, to dig up dinosaurs. I took the whole kit, and I used it. On Sunday night I showed half a dozen people the moons of Jupiter, the ice caps of Mars, the rings of Saturn, a couple of double stars, and the full moon. Monday night I was too pooped for stargazing. Tuesday I spend a couple of hours observing with my parents and a couple of other visitors who were also staying at the Black Mesa Bed & Breakfast. We looked at the same run of stuff as I had Sunday evening, plus a couple more double stars, the open clusterM7, and the False Comet Cluster in southern Scorpio, which is a visual amalgam of the open clusters NGC 6231 and Trumpler 24. After that, we were clouded out for the rest of the week, but it was still more than worth it to have the little scope along.

Verdict: an amazingly flexible and capable setup. I look forward to many more adventures with it.

IMG_0802

Here’s one more shot from the road. Nothing telescopic – on Thursday morning the rising sun was accompanied by a pair of sun dogs. This is a raw shot with my iPhone 5c. The best sun dogs I’ve ever seen in my life.

h1

A tour of Big Bear Solar Observatory

October 13, 2015

BBSO from up high

The gleaming white domes of the Big Bear Solar Observatory sit at the end of a causeway that projects from the north shore of Big Bear Lake – they draw the eye from almost any point in Big Bear Valley. And as I mentioned in my last post, the Pomona Valley Amateur Astronomers got to visit the BBSO on Friday, October 9.

BBSO causeway

We were greeted at the gate by Claude Plymate, Chief Observer and Telescope Engineer at BBSO, and Teresa Bippert-Plymate, who is not only a professional solar astronomer but also the president of the Big Bear Valley Astronomical Society. As pros who are also enthusiastic amateur observers, Claude and Teresa did a great job of pitching the tour with just the right balance of necessary background, technical detail, and the hands-on practicality of managing big scopes and the complicated hardware and software necessary to run them.

BBSO GONG scope

The first thing you come to on the causeway is a big white storage container with a coelostat (sun-tracking mirror) – this is one of the six Global Oscillations Network Group (GONG) installations spaced roughly equally around the world. The GONG telescopes track the sun around the clock for helioseismology research, mapping the acoustic pressure waves that propagate around and through the sun.

PVAA group outside BBSO domes

The smaller dome just short of the end of the causeway holds two telescopes on a common mount. One is a 10cm full-disc hydrogen-alpha solar telescope, the other is a second smallish refractor for Project Earthshine, which tracks the Earth’s albedo by measuring the intensity of the earthshine that falls on the moon’s unlit side.

London with BBSO New Solar Telescope

The observatory’s ‘big gun’ is the 1.6-meter New Solar Telescope, an off-axis Gregorian. One-point-six meters is 63 inches, which means this scope has a slightly larger aperture than the famous 60-inch reflector on Mount Wilson (which I’ve been fortunate to visit – see here and here). Here’s the light path of the NST (an unmodified version of this image is at the bottom of the post):

BBSO New Solar Telescope light path

And here’s a view on the right side of the scope showing the mask that rejects the light from most of the sun (which bounces onto the back wall of the dome, landing at about the same intensity as natural sunlight). The mask has a small hole which allows light from a small part of the sun to pass through to the chain of lenses and mirrors that bounce the beam to the research instruments on the next floor down.

BBSO New Solar Telescope right side optics

It took me a while to wrap my head around how this works. If the mask rejects most of the sun’s light, doesn’t that mean that most of the telescope’s 1.6-meter aperture is wasted? The answer is no – the mask functions as a field stop, not an aperture stop. If I put a mask across the front of my 10″ Dob and let only a 4″ beam of light through, that’s an aperture stop – it effectively turns a 10″ f/4.7 obstructed system into a 4″ f/12 unobstructed system (which may be desirable for sharp planetary and lunar views, where light-gathering is not so important). But imagine I left the front of the scope uncovered and instead masked down the field stop at the bottom of one of my eyepieces, so that I could only see a tiny hole in the center. If I put the scope on Jupiter, I’d see Jupiter in the center of the field but nothing else – I’d be getting the full benefit of the 10″ mirror’s light-gathering and resolution on Jupiter, but rejecting the light from the surrounding starfield, which would reflect off the mask at the bottom of the eyepiece. That’s more or less what happens with the New Solar Telescope, only “the rest of the field” is the rest of the sun, and the small area that the scope focuses on is not a planet but a small patch of the sun’s surface. But that patch can be imaged with the full benefit of the 1.6-meter primary mirror’s angular resolution.

BBSO burnt light shield

Now, a 1.6-meter mirror focusing the light from the full disc of the sun onto an area about 3cm across is a hell of a lot of energy. That beam could fry electronics, melt metal, and start fires if it got off-course. There are multiple redundant systems to prevent that from happening – the dome can close, the primary mirror has a cover that can activate quickly, and if all else fails a 1/16″ steel plate slides into position in front of the field stop. A few years ago – before Claude’s tenure as Chief Observer! – there were not so many safeguards in place. The software that allows the telescope to track the sun briefly got confused by some passing clouds, and the scope stopped tracking properly. That allowed the concentrated beam of sunlight to slide off-target. The steel plate did its job and slid into place, and the scope melted two holes in it in the space of about 30 seconds. The folks at the observatory keep the melted metal plate as a visible reminder that they are in a very real sense playing with fire.

BBSO sunspot image

This sunspot is a bit larger than our planet.

Our last stop on the tour was the telescope control room, where another professional astronomer was driving the scope and taking data. There was a minor mechanical hiccup at one point and Claude had to swing into action, running back and forth from the control room to the instrument room to get everything back on track. It was amazing to see live images coming in in real time. I’ve been fortunate to tour a lot of observatories but never while they were working. At one point Claude and the other astronomer put the scope on a sunspot group which was just swimming in atmospheric distortion. Once the computer had enough data to engage the adaptive optics, they switched on the AO and the view instantly settled down to nearly rock-solid, like it was painted on the monitor.

BBSO New Solar Telescope

The NST is currently the largest, best-equipped solar telescope in the history of humankind, and it is producing the sharpest images of the sun ever taken. BBSO joins Mount Wilson and Palomar in continuing the long, proud history of world-class astronomy in southern California. And it’s 65 miles from my house. Many thanks to Claude and Teresa for being such gracious hosts and letting us see their beautiful machines in action.

h1

Another visit to the Palomar Observatory

November 28, 2014

Palomar 2014 - London with the dome 1

London had the whole Thanksgiving week out of school, so I took some vacation days to spend it with him. On Monay we went to Anza-Borrego Desert State Park to camp and observe – more on that in the next post. We’d never been there before, and in planning our route I noticed that we’d go pretty close to Palomar Mountain. I asked London if he’d like to visit the observatory again, and he jumped at the chance. Our only previous visit, in September of 2012, had left a big impression on him.

Palomar 2014 - 18-inch model

The visitor’s center had gotten a major upgrade to its exhibits in the intervening two years. Out in the entrance lobby, a small display case showed this model and photo of the 18-inch Schmidt camera, which was the first operational telescope on Palomar Mountain. It entered service in 1936, a full 12 years before the 200-inch Hale telescope first opened its shutters in 1948. The 18-inch Schmidt had a long run – Carolyn and Eugene Shoemaker and David Levy were using it in 1993 to find and catalog near-Earth objects when they accidentally discovered Comet Shoemaker-Levy 9.

Palomar 2014 - 18-inch front

The 18-inch Schmidt has since been retired, and now it’s on display in the visitor center. This is a huge upgrade to the exhibits there – when we visited in 2012, all there was to see were the lighted plates along the walls of the room. Now the 18-inch Schmidt sits in a plexiglass island that is surrounded on all sides with photographs, signage, a touch-screen that shows short movies about the history of the observatory, and display cases with equipment used to operate the camera, including the hand-operated press that punched 6-inch circles of film.

Palomar 2014 - 18-inch back

Here’s the back end of the scope. As you can see, it has no eyepiece and no provision for one. Where an amateur Schmidt-Cassegrain telescope has its secondary mirror, the Schmidt camera had a piece of film (and maybe later a CCD?). On top is what looks to be a 6- or possibly 8-inch guidescope, which does have an eyepiece. Until the advent of computerized autoguiders, taking long-exposure photographs meant that an astronomer had to sit at the guidescope for hours, keeping the crosshairs centered on a guide star and tweaking the alignment of the telescope by hand. Sounds thrilling, eh? I wonder how much more productive professional astronomers are as a group, now that they don’t have to spend so many hours guiding telescopes.

Palomar 2014 - Hale dome with book

But of course the real attraction at Palomar Observatory is the 200-inch Hale telescope, which was the world’s largest fully-operational telescope for almost half a century. Astronomy books from before the early 90s talk about the Hale telescope in the same glowing tones reserved for the Hubble Space Telescope today. And for good reason – the 200-inch scope served roughly the same purpose as the HST and the twin Keck telescopes today. Until the space race of the following decades, the construction of the 200-inch telescope was probably the closest thing to a ‘megaproject’ in science and engineering. The story of how the telescope came to be is a decades-long saga of obsession, invention, science, engineering, and politics; if you’re interested in that story, I highly recommend The Perfect Machine: Building the Palomar Telescope by Ronald Florence. Here’s the 200-inch dome alongside its portrait from London’s Golden Book of Stars and Planets (1985 printing).

Palomar 2014 - London with Hale model

Famously, much of the design of the 200-inch scope came from the mind of amateur astronomer and amateur telescope maker Russell Porter, who built this scale model in the 1930s.

Palomar 2014 - Hale telescope

And here’s the scope itself. We didn’t get to go inside the dome and walk around the scope like we did last time. Those tours only run from April to October. But we were able to look in at the scope from an observation gallery.

Palomar 2014 - Hale concrete mirror blank

Outside the dome is this 200-inch concrete disk, which was used as a mass simulator to make sure the mechanical structure of the telescope worked before the actual mirror was installed. The mass blank has apparently been sitting out in the elements, right across the road from the dome, since 1948. It looks little worse for the wear, and it gives visitors a visceral sense of just how big a 200-inch mirror actually is.

Palomar 2014 - London with the dome 2

One last shot from this visit: London just off the path that leads from the visitor center to the dome. I had to take this one to replicate the picture below, from our last visit in 2012. It’s part of what is apparently now an ongoing series of pictures of London at different ages in front of the same telescope – see him with a replica of Galileo’s telescope here.

London at Palomar Mountain

Next up: crazy-dark skies at Anza-Borrego. Stay tuned.

h1

Observing Report: All-Arizona Star Party 2014

October 30, 2014

 

AASP 2014 - loaded for bear

If it’s late October or early November, it must be time for the All-Arizona Star Party. London and I headed out for it this past Saturday, Oct. 25. As in 2012, we were joined by the indefatigable Terry Nakazono. Here Terry and London pose for the obligatory “look how much crap we crammed into the car!” photo.

We arrived at the site about an hour before sunset, plenty of time to set up camp and chat with the neighbors. As usual, we set up not far from Darrell Spencer and AJ Crayon, but irritatingly I failed to get a picture with Darrell, my first such lapse.

AASP 2014 - setting up in the shade

When we arrived the sun was still well above the horizon and temperatures were in the mid-90s. London and I set up our scopes on the east side of the car so we could sit in the shade. Here London is tinkering with his AstroMedia 40mm “plumber’s telescope”, which we just built last week. More about that scope in a future post. The scope behind London was another AASP newcomer.

C80ED newly arrived 1600

This is my new Celestron C80ED. This scope originally retailed for about $500. Celestron donated all of the remaining stock of the spotting scope version to Astronomers Without Borders, and AWB sells it for $350 with free shipping. Vicki got me one for our anniversary last week (and I got her some leather boots–in both cases, the choice of gift was, ahem, heavily influenced by the recipient). The package arrived on Thursday about half an hour before the partial solar eclipse was to start, so I just had time to take this photo before I ran out the door to London’s school.

I got this scope because it filled a hole in my lineup. My Maks have sharp optics but can’t do wide fields. The TravelScope 70 can do wide fields but still has limitations, even after its tune-up. And the C102 is a wonderful scope but not exactly small, and although its chromatic aberration is minimal it is still there. I figured a small ED scope could be a grab-n-go that could deliver wide fields like the TS70, take magnification on planets and double stars like the Maks, in a more convenient and false-color-free package than the C102. Plus I’d just always wanted to try an ED scope. I was going to get an AstroTech AT72ED but they are out of stock and have been for ages. The C80ED offered a small but significant aperture boost for less dough, so I bit–or rather, encouraged Vicki to do so.

I was going to bring both the C102 and the C80ED, but as the date got closer I decided that what I really wanted to do was put the C80ED through its paces under those dark Arizona skies, and another scope would just be a distraction. I had briefly set up the C80ED on Friday night to make sure the scope didn’t have anything seriously wrong. It didn’t–in fact, it star-tests as well as any scope I’ve ever owned.

AASP 2014 - refractor city

Turns out we were all rolling with small refractors. From left to right they are the C80ED, London’s 60mm Meade refractor, Terry’s Orion Short-Tube 80, and London’s 20×50 Orion spotting scope (reviewed here). Terry had been going to bring a 4.5-inch reflector but the Clear Sky Chart said that conditions were iffy. Also, like me he had been interested to see how deep he could push a small refractor under dark skies.

Incidentally, after bringing my XT10 to the AASP in 2010 and 2012, I brought the Apex 127 last year and now an 80mm refractor this year. At this rate, in a couple more years I’ll be down to bringing just a finderscope. (I jest, but I have had a longstanding interest in going to a dark site with only the SV50 or GalileoScope to see how many things I could see with a small scope under dark skies–so far, greed for photons has always won out, so this project remains unattempted).

AASP 2014 - moon in C80ED

Our first target of the evening was the waxing crescent moon. I got a few shots with the iPhone shooting through the C80ED. Here’s the best one. All I did was crop it and flip it left to right–other than the orientation change, the actual pixels have not been tinkered with at all. Note the absence of false color. I also put the scope on Vega early in the evening and could not detect any false color–very impressive.

On the drive out, Terry asked me if I had any plans or goals for the evening. I did have a few:

  • above all, spend some time observing with London;
  • look at some familiar objects to get a feel for the scope;
  • track down some southern objects, since I’d be at a dark site with a clear and dark southern horizon;
  • to the extent that I could, test the scope on challenging targets like globular clusters and close double stars.

And that is more or less what I actually did.

A word about the sky conditions before I get into actual observations: they were not fantastic. Seeing was lousy the whole night, with the stars twinkling visibly all over the sky. Transparency was good in the early evening but around 9 or 10 a very light haze set in across the whole sky. It wasn’t ghastly, but it noticeably knocked down the contrast–where the Milky Way had blazed overhead at 8:00, by 10:00 it was just sort of there, visible but not nearly as prominent. In my notebook, I rated the seeing at 2 out of 5 and the transparency at 3 out of 5.

I only used four eyepieces for most of the night:

  • 24mm ES68, which in the C80ED gives a magnification of 25x and a true field of 2.7 degrees
  • 14mm ES82 (43x, 1.9*)
  • 8.8mm ES82 (68x, 1.2*)
  • 6mm Expanse (100x, 0.67*)

I did use a 32mm Plossl to drop the power down to 18.75x to see if Polaris could still be split (it couldn’t, but read on), and I used a Barlow once. Other than that, it was just these four, and out of these four, I used the 24mm and 8.8mm EPs significantly more than the other two. I had planned to use the 8-24mm Celestron zoom, but in testing the scope Friday night, I could tell that the Explore Scientific eyepieces were noticeably sharper. Good heavens, I think I’m turning into a refractor weenie and an eyepiece snob.

After the moon we visited Mars, but it was tiny and featureless and fairly burning in the bad seeing. Then I swung next door to Sagittarius and got my first surprise of the evening: the big glob, M22, was partially resolved even at 25x with the ES68! I love globs–they are one of my chief joys in observing with the XT10, and I expected them to be dim, featureless cottonballs in the C80ED. That I was getting partial resolution on one in a small scope at low power was pretty arresting. I had a quick look at M28, M8, and M24, and then helped London get his 60mm on target on M22, M28, and M8. London was interested in seeing a double star so we wheeled the scopes around and had a look at Mizar and Alcor. Then we looked at M13, M57, the Pleiades, the Double Cluster, and Stock 2 in his 60mm.

AASP 2014 - our camp

Highlights of the Evening: M13, M57, M27

After all that, London went to lie in the lounge chair and watch for shooting stars–he got 17 before he went to sleep around 10:30. I went on to M13, the Great Globular Cluster in Hercules, and had my socks knocked off. Like M22, it was partially resolved even at 25x, and much better at 68x and 100x. It wasn’t fully resolved, of course, and the XT10 will blow away the C80 on this or any other glob, but it was at least a ball of many, many stars and not just a fuzzy blob. Here’s one of the nice things about widefield eyepieces and short focal length scopes: you get huge fields even at reasonable magnifications. At 68x in the 8.8mm ES82, I could park M13 comfortably inside the field stop and watch it drift across the field of view for more than four minutes. Even at 100x in the 6mm Expanse, I could watch the cluster drift across the center of the field for a bit over two minutes. I commented to Terry that if I hadn’t had other things I wanted to see, I could have kept watching M13 all evening and been very happy.

Lyra was still pretty high overhead so I went there next. Epsilon Lyrae was shimmering in the bad seeing. It was elongated at 68x and almost split at 100x, but I had to Barlow it up to 200x to get a clean split. You may recall that under better conditions, the TravelScope 70 split the Double-Double at 133x, and I know that it is often split at well under 100x by high quality small refractors. So the high magnification required for the split here reflects more on the quality of the seeing than on the quality of the telescope. I’m looking forward to seeing how the C80ED performs on Epsilon Lyrae on a better night.

M13 was probably my favorite view of the night, but a close runner-up was M57, the Ring Nebula. It was clearly ring-like at 68x, but I liked it even better at 25x–the expansive 2.7-degree field of the ES68 showed the nebula nicely framed between Beta and Gamma Lyrae (the stars that mark the south end of the constellation stick-figure) and their attendant stars. It reminded me of the view of the Ring at 12.5x in the TravelScope 70 back in 2012, which is what got me into refractors in the first place.

After that I spent a few pleasant minutes rocking through the Lyra-Cygnus-Sagitta axis, observing M56, Albireo, Brocchi’s Coathanger (Cr 399), M71, and M27. Interestingly, the view of the M27 was very similar to the one I had through the C102 at the Salton Sea last year: I could not only see the “apple core” extensions, but also some of the “football” nebulosity between those extensions. That is a lot of nebulosity to pick up in an 80mm scope. I wonder what I could see on a night with better transparency.

By now it was about 8:50 and I knocked off the serious observing for a while. First I went to hang out with London, and while he watched for shooting stars, I used the 15×70 bins to sweep up many of the same summer showpieces I’d just seen in the telescope: M57, M56, Albireo, Cr 399, M71, M27, M13, the Double Cluster, some of the nice NGC open clusters in Cassiopeia. Then some folks from the other end of camp stopped by and we chatted for a while. Darrell came over and had a look at M13, and London and I went down to the center of camp to get some hot chocolate. When we got back, London sacked out. I had a quick look at M11 before it set, and tracked down the asterism DeLano 1 just to make sure it was still there. Then, at Terry’s suggestion, I tried M15, the big glob off the nose of Pegasus. Here are my unedited notes:

M15 – tough nut to crack. Starting to look grainy at 100x. Also pretty grainy at 68x in 8.8mm ES82. Even though it only gives about 2/3 the magnification of the 6mm Expanse, I think the 8.8mm ES82 shows almost as much. It’s just a superior piece of glass. Another ES82 or 68 in the 3-5mm range should be priority.

Now, this idea that the 6mm Expanse is maybe not 100% awesome–hold onto that thought, we’ll revisit it at the end of the evening.

IMG_2140

Go South, Young Man

Ever since my incredible Salton Sea run with David DeLano last fall, I have been painfully aware of how much I’ve neglected the southern sky. So from 10:45 to 12:30, that’s where I went. My first southern target was NGC 7293, the Helix Nebula. It was dead easy to see once I got there, but it took me an unusual amount of faffing about to get on target. I was using the 6×30 straight-through correct-image finder that came with the C80ED. I’m normally a RACI man so using a straight-through finder took some getting used to. But I kinda like it, now that I have the hang of it.

After that it was onto some galaxies and planetaries: NGCs 55, 300, 288, 253, 247, 246, 720, and 779. NGC 288 and NGC 253 were nicely framed in the same field. NGC 288 is a globular cluster circling our own Milky Way galaxy, about 29,000 light years away, whereas NGC 253, the Silver Coin galaxy, is 11.4 million light years away, almost 400 times farther, and rivals our own Milky Way in size. So that pair has a bit of the M97/M108 ‘odd couple’ thing going on.

The not-quite-edge-on galaxies NGC 720 and NGC 779 were my only new objects for the evening. Both of them are on the Herschel 400 list, and bring my H400 tally to 175. I am starting to wonder if I will ever finish the Herschels–the only new ones I’ve notched in the past couple of years have been bagged at the All-Arizona Star Party. I gotta get out in the spring more. I’ve just about exhausted the fall Herschels, but there are hundreds of spring galaxies to observe in Ursa Major and the Virgo-Coma Cluster.

C80ED AASP 2014 2000

Orion and Points North

After almost two hours of faint fuzzies, I was ready for a change of pace. I turned east, toward Orion. The view was pretty great–the Trapezium was split into four components at only 25x, and the nebulosity seemed to go on forever. And yet, the subtle gradations in the nebulosity did not seem as pronounced as I had observed on other nights. Terry noticed the same thing observing Orion through his ST80. He thinks that the poor transparency was leaching some of the contrast out of the view, and I am inclined to agree.

Without a doubt, the strangest observation of the night was of NGC 1980, the field of nebulosity around Iota Orionis. When I looked right at the nebula, it was steady, but when I looked back at M42/M43, NGC 1980 would flicker in my averted vision like a bad fluorescent bulb. At first I thought maybe it was just my eyes, but I called Terry over and he reported seeing the same effect.

Now, I don’t think that the nebula was actually flickering. I suspect that through some quirk of eye/visual system physiology, it only seemed to flicker in averted vision.

Just to rule out the obvious distractors: we were parked on the very east end of the airstrip so there was probably no-one between us and Phoenix. Neither of us were using flashlights or any electrical gear at all while we were observing in Orion. Our nearest neighbors were about 50 yards to the NW and SW, and they’d all turned in for the night. So I’m about as certain as I can be that it wasn’t some terrestrial source that just happened to be shining into the eyepiece or objective lens. Also, we only noticed the flickering on NGC 1980, and not on the extended “wings” of nebulosity from M42, which were of similar brightness at their extremities.

Has anyone else seen anything like this, either for NGC 1980 or other DSOs? If so, I’d love to hear about it–the comment thread is open.

After Orion’s Sword I bounced around a few northern Messiers–M78, M1, M35 with NGC 2158 just starting to resolve behind it, M81 and M82 in the same field, and M97 and M108 in their own field. Midway through that tour I stopped to split Polaris. It was continuously split at 24x in the 24mm ES82, not split at 18.75x in the 32mm Plossl. This illustrates just how seeing-dependent double star splitting is–Friday night from my driveway, the seeing was even worse, and that evening Polaris was not continuously split at 25x, but it was a 43x in the 14mm ES82, and even at 28.5x in the 21mm Stratus. As indicated above, the seeing out in Arizona Saturday night was not awesome. One of my quests with the C80ED is to see how low I can go, magnification-wise, and still get clean splits on some of the classic double stars. Watch this space.

M97 and M108 were my last DSOs of the evening. After that I turned to Jupiter, and even at 68x I could see at least 4 belts. The Galilean moons were spaced about evenly, two on each side of the planet. Terry and I compared views of the planet through the C80ED and his ST80. We could get similar magnifications with our favorite short eyepieces: the 8.8mm ES82 gave 68x in the C80ED (FL = 600mm), and the 6mm Expanse gave 67x in the ST80 (FL = 400mm). So how did the scopes compare? Well, obviously the ST80 was throwing up a lot of false color, but I could detect the same four belts that I could in the C80ED, albeit not quite as crisply. More informative was the comparison of eyepieces. Terry had a 6mm Expanse clone from AgenaAstro.com. While were swapping all of these eyepieces between the two scopes–the 8.8 ES82, the 6mm Expanse, and the 6mm Expanse clone–I noticed something I had never spotted before: the 6mm Expanse threw up a huge circle of glare around Jupiter. Perfectly circular, like a lens flare, centered on Jupiter, and spanning out to the outermost moon on each side. The glare circle was there in the 6mm Expanse in both scopes. It was not there in either scope in the ES82, nor in the AgenaAstro Expanse clone. These are the Agena Enhanced Wide Angle (EWA) 6mm, which goes for $45 (you can find it here), and the 6mm Orion Expanse, list price $68, street about $59. So if you’re in the market for a 66-degree EP, you can save about 25% and get noticeably better performance from the Agena version. I’m tempted to get one myself, and hock the Orion EP. Until now, the 6mm Expanse has been one of my most-used EPs, but now that I can see its faults…like I said, eyepiece snobbery is taking hold.

IMG_2191

Settling Up

After one last look at Jupiter in the ES82 at 3:00 AM, I shut down and went to bed. The next morning, London and I went on our customary “bone hike”, and we did find several bones, including a couple of cow limb bones, and the jackrabbit lower jaw shown in the photo. More exciting were the Western diamondback rattlesnake and the horned lizard that we found.

IMG_2219

My final tally for the evening was 45 telescopic objects:

  • 2 planets (Mars and Jupiter)
  • 22 Messiers
  • 13 other NGCs
  • 2 asterisms (Brocchi’s Coathanger, DeLano 1)
  • 1 other catalogued DSO (Stock 2)
  • 5 double/multiple stars (Mizar/Alcor, Albireo, Epsilon Lyrae, Trapezium, Polaris)

…plus a couple of meteors.

IMG_2193

Irritatingly, I realized later that I had completely missed out on some real gems. I never once pointed the scope at the Andromeda galaxy or its satellites–detail in M31 would have been a good test of the C80’s optics. And I skipped the nice open clusters in Auriga–M36, M37, and M38–which maybe more than any other set of clusters give that “diamonds on black velvet” feeling in a sharp telescope. We set up early enough that I could have rocked through all of the Sagittarius Messiers instead of the handful I actually saw, but I deliberately traded that time away to help London find some things, so I don’t feel bad about that particular omission. The others are a bit galling.

Even with those omissions, I still met all of the goals that I had set for myself: I got in some good observing time with London, I had fun touring the southern skies, even if most of the things I saw there were revisits, and I both got a feel for how the scope performed on average targets, and got to push it on some challenging ones. The biggest revelation to me was that an 80mm scope would start to crack open some of the bigger globs. M13 and M22 didn’t just look good, they looked stunning. I wish I was observing them right now.

In sum, a great night of stargazing, and a pretty thorough field test for the C80ED. I think I am going to have a LOT of fun with this scope.

IMG_2187

h1

Observing Report: a semi-cloudy night at Joshua Tree

October 8, 2012

My scope at Joshua Tree Saturday night. Clockwise around the scope are the bright star Capella just in front, the constellation Perseus (12:00), the Pleiades (2:00), the Hyades (V-shaped arrow of stars directly oppose Capella), and Jupiter (4:00). Photo by Kevin Zhao.

Saturday evening I was at Joshua Tree. My summer anatomy students invited London and me along to the Indian Cove campground. I didn’t have room in the car for the big gun so I took my 5” Mak, which is what it’s for—times when I need a decent amount of aperture in a small package. That was no loss: the sky was striped with high, thin clouds all night and never really cleared out. We got decent views of a few things, but the 10” would have been wasted. We used the Mak to look at the Double Cluster and Jupiter. In moments of steady seeing there were quite a few cloud belts showing, and all four Galilean moons were lined up on one side of the planet, which was pretty cool. London brought along his AstroScan and we used it to look at extended objects like the Pleiades and the Andromeda galaxy.

iPhone panorama by Chad Claus. Click for the big version!

The clouds might have made for lousy telescopic views but they made for gorgeous naked-eye skywatching. At sunset the whole sky was striped with light from one horizon to the other.

Here’s another view, actually taken by me for a change. This is the unprocessed raw image, direct from my Coolpix 4500.

Moon halo photo by Kevin Zhao. Jupiter is inside the ring at 1:00, and the Pleiades are outside at about the same angle.

When the moon rose around 11:30, it was surrounded by a ring of faint light. I thought it was a moonbow, but that’s something different. The ring we saw around the moon is called a 22-degree halo and apparently has no other or more poetic name. That’s a shame. In the early morning, when the moon had gotten well above the horizon, it was surrounded by a complete circular halo with radiating clouds on either side. That was worth the clouds. I’ve been under wonderfully clear desert skies many times, but I’ve never seen a moon halo quite like that. For once, I think the clouds were worth it.

Update: There wasn’t just a moon halo, there was also a sun halo Saturday afternoon. Agnes Kwon captured it in pixels. Witness:

Many thanks to Agnes, Chad, and Kevin for letting me illustrate my post with their awesome photos!