Archive for the ‘Messier objects’ Category

h1

My article in the March 2017 Sky & Telescope

January 27, 2017

jan-2017-st-cover-wedel-article-highlighted

This is one was an easy write-up, because it had been in my head and in my notebook for a long time. Way back when I first got tapped to write for S&T, I pitched a tour of the winter Milky Way from Puppis to Gemini. I’d never written for a magazine before and I had no idea how much sky it would take to fill 1600 words. Turns out, all I got through on the first attempt was Canis Major, Puppis, and a couple of odds and ends like M48. That was my article in the December 2015 issue.

Right after that came out, I pitched the unfinished second half, and now it’s out. Like that first article, it’s a tour of the winter Milky Way pitched at binocular users, but hopefully useful for telescopic observers, too. This piece runs from Monoceros through northeastern Orion to southern Gemini. The March issue of Sky & Tel is probably hitting newsstands this week. If you get a copy, I hope you enjoy the article.

If you’re thinking that Gemini is a pretty arbitrary place to stop cruising the Milky Way, you’re not wrong. I can say no more for now, but stay tuned…

Update: whoops, I originally put January in the post title instead of March! This is, of course, the March issue, it just came out in January. Sheesh.

h1

Small, medium, large – observing near and far in the last two weeks

June 4, 2016

Matt at Delicate Arch IMG_2984

Preface – Running with the Red Queen

I’ve just finished maybe the busiest spring of my life. January and February were largely sunk into day-job work – time-consuming, but necessary, interesting, and in fact rewarding. Then the last three months have been taken up with travel and public lectures.

  • In March I went to Oklahoma for 10 days of paleontological research in field and lab, and I gave a talk at the Oklahoma Museum of Natural History titled, “Dinosaurs versus whales: what is the largest animal of all time, and how do we know?”
  • In April I did a two-day trip to Mesa, Arizona, for more paleo work. No talk on that trip, but I did participate in the “Beer and Bones” outreach at the Arizona Museum of Natural History.
  • In early May I was in Utah for another 10 days of paleo research, and I gave a talk at the Prehistoric Museum in Price on, “Why elephants are so small”. My colleague Mike Taylor and I took one day off from dashing through museums to tour Arches National Park, which is where Mike took the photo at the top of the post.
  • Last weekend I was up at RTMC, where I gave a Beginner’s Corner talk on, “The scale of the cosmos”.

I’m not complaining – far from it. It’s been exhilarating, and the collaborative work I have rolling in Oklahoma and Utah will hopefully be paying off for years. And planning and executing all of the work has been satisfying. Particularly the RTMC talk, which deserves a whole post of its own. And ultimately this is all stuff that I chose to do, and if I could do it all over again, I would.

BUT there have been consequences. Most frustratingly, I haven’t had enough uninterrupted time to get anything written up for publication – not the sizable backlog of old projects I need to get finished up, and not the immense pile of new things I’ve learned this year. I haven’t gotten out to observe as much as I’d like, and I’ve barely blogged at all.

And it’s not over. In two weeks I leave for a week of paleo fieldwork in Oklahoma, then I’m back for a week, then I’m off to Utah for about 10 more days of digging up dinosaurs. In between I’ll teaching in the summer human anatomy course at WesternU.

But I’ve had a nice little pulse of observing in the last couple of weeks – two weekends ago up at Arroyo Grande, near San Luis Obispo, last weekend at RTMC above Big Bear, and this week at Santa Cruz Island off the coast. No time for separate observing reports, so I’m combining them all into one.

Observing Report 1 (Medium): The Planets and Moon from Arroyo Grande

I was fortunate to be part of a great, tightly-knit cohort of grad students at Berkeley. Of the people I was closest to, some are still in and around the Bay Area and some of us have been sucked into the gravity well of the LA metro area. Occasionally we get together somewhere halfway in between, either up in the Sierras or near the coast. I usually take a telescope, because almost everywhere is darker than where I live, and when I’m traveling by car there’s simply no reason not to.

IMG_9452

This year we met up for a couple of days and nights in Arroyo Grande. We hiked in the hills, went down to Morro Bay to watch ocean wildlife and buy seafood, played poker, and generally got caught up on work, family, hobbies, and life. Our first night was wonderfully clear. I had along the trusty C80ED, which has become my most-used scope. It’s mechanically rugged, optically damn near perfect, and compact enough to not require much time or thought when it comes to transportation and setup. On Saturday, May 21, we spent some time with Jupiter, Mars, and Saturn. Jupiter and Saturn were as they always are: beautiful and surprising in their immanence. I cannot look through the telescope at either of them without being forcefully reminded that they are as real as I am, that as I go about my days full of busyness and drama, they are always out there, hundreds of millions of miles away, go about their own business whether I or anyone else pay them any attention or not. One of my friends had never seen the rings of Saturn with his own eyes, so that was an added bonus.

Mars was the real treat. Using the Meade 5mm 100-degree EP and a Barlow I was able to crank up the magnification to 240x. The dark dagger of Syrtis Major and the white gleam of the north polar cap were both obvious. It is always arresting to see details on this world that has loomed so large in the human imagination, from ancient mythology to science fiction to current and future exploration.

The next night we sat out on the patio, eating oysters and watching the sun set. I didn’t have any of my own binoculars along, but a friend had brought a couple, and after it got dark we watched the still-mostly-full moon rise through the trees on the ridgeline to the east.

It was all shallow sky stuff (solar system, that is), but it was all spectacular, and I’m glad we did it.

Observing Report 2 (Large): Going Deep at RTMC

Last weekend I was up at RTMC, finally. I’ve been wanting to go since I got to SoCal, but in the past it’s fallen on the same week as our university graduation and I’ve been too wiped out. I didn’t make it up for the whole weekend. We went up as a family to stay Saturday and Sunday nights. I went up to RTMC early Sunday morning to look around, give my talk, and hang out. Ron Hoekwater, Laura Jaoui, Jim Bridgewater, Ludd Trozpek, and Alex McConahay of the PVAA were all there and we spent some time catching talks and jawing about skies and scopes. I also chatted with some folks from farther afield, including Arizona and NorCal.

IMG_9523

I took off in the afternoon to spend time with London and Vicki, then went back up after dinner. All I had along were my Celestron 10x50s (yes, those), but Ron had his 25-inch Obsession dob, and he was content to use it as the centerpiece of a group observing session. We looked at the planets, or at least Jim Bridgewater and I did – Ron had checked them out the previous night and didn’t want to blow out his dark adaptation. That was a smart call, as the Obsession gathers a LOT of light and the planets were almost blown out. We could have put in a filter, but ehh, we had other things to be getting on with.

We started with globular clusters. M3, M5, M53, NGC 3053, and one or two other distant NGC globs. The close ones were explosions of stars that filled the eyepiece. The distant ones shimmered out of the black like the lights of distant cities. Then we moved on to galaxies. M81 and M82 were bigger, brighter, and more detailed than I had ever seen them. M51 was just stunning – the spiral arms were so well-defined that it looked like Lord Rosse’s sketch.

M51 sketch by Lord Rosse

As nice as those were, the Virgo galaxy cluster was better. There were so many galaxies that identifying them was a pain – there were so many little NGCs in between the familiar Messier galaxies that my usual identification strategies kept getting derailed. It was kind of embarrassing, actually – I did just write an article about this stuff. But also incredible. NGC 4435 and 4438 – the pair of galaxies known as “The Eyes” – were so big, bright, and widely separated that I didn’t realize I was looking at them until the third or fourth pass.

We finished up on planetary nebulae. The seeing was good but not perfect – the central star in the Ring Nebula was visible about a quarter of the time. The Cat’s Eye, NGC 6543, was a fat green S with a prominent central star – it looked like it had been carved out of jade.

An evening under dark skies with a giant scope is both a blessing and a curse. A blessing because you get to see so many unfamiliar objects, and so many details in familiar objects, that are beyond the reach of smaller scopes. A curse because by the end of the session you may find yourself thinking, “Sheesh, why do I even bother with my little 3-, 5-, and 10-inch scopes?”

Fortunately another observing experience, one that would remind me of the joys of small-aperture observing, was right around the corner.

Observing Report 3 (Small): A Binocular Tour of the Spring Sky

My son, London, is finishing up fifth grade at Oakmont Outdoor School, one of the half-dozen or so different elementary schools in the Claremont Unified School District. We were fortunate when we moved to Claremont to land just a couple of blocks from Oakmont – we would have been happy to land within walking distance of any of the schools, but if we’d had our choice we would have picked Oakmont anyway, since we wanted to raise London with as much exposure to the outdoors as we could.

Oakmont’s slogan is, “Learning in the world’s biomes”. The major activities of each grade are organized around a particular biome, and so is the end-of-year field trip. In third grade, the kids went to Sea World. Last year it was the desert by Palm Springs for a 2-day, 1-night trip. This year it was Santa Cruz Island, in Channel Islands National Park, for a 3-day, 2-night trip. Parent chaperones are needed and I’ve been fortunate to get to go every year.

IMG_9598

The island was amazing. We saw dolphins, sea lions, and petrels on the boat ride out – I took the photo above from the prow of the ship – more sea lions, seals, pelicans, cormorants, gulls, and red pelagic crabs at the shore, and dwarf island foxes, ravens, and the occasional hawk inland. On the final evening, June 2, we hiked up to the top of the cliffs to watch the sun set over the Pacific, which was one of the most beautiful things I have ever seen in my life. I didn’t know it at the time, but I’d see something even more beautiful just a few hours later.

I had binoculars along – Bushnell 10×40 roofs that I got specifically for daytime use, and which I had used a lot on the trip already to watch wildlife. When we got back to camp, a few of the teachers and hung back and started talking about the planets, bright stars, and constellations. I started pointing out a few of the brighter targets and passing around the binoculars, and we ended up having an impromptu binocular star party. (The kids and a fair number of the adults were all exhausted from a full day of hiking, and sensibly went to bed.)

IMG_9987

What followed was one of the best and most memorable observing sessions of my life. The only permanent residents of Santa Cruz Island are a couple of National Park employees, and they turn their lights off after dark. We got a little light pollution on the eastern horizon from Ventura and Oxnard, some 20 miles distant, but for the most part the sky was darkAfton Canyon dark, Hovatter Road dark – what I typically refer to as stupid dark.

We roamed all over the sky, looking at targets large and small, near and far, bright and dim. I didn’t keep track as we were going, but I wrote down a list yesterday morning on the boat ride back to the mainland (we went through a fog bank and only saw a handful of dolphins, so I had plenty of time).

In the northern sky:

  • Polaris and the Engagement Ring asterism
  • Mizar and Alcor
  • M51 – yes, it was visible in the 10×40 bins
  • The 3 Leaps of the Gazelle

In the western sky:

  • M44, the Beehive – easily visible to the naked eye, and just stunning in the binos
  • Leo
  • Coma Berenices star cluster
  • Virgo/Coma galaxies – identifications were tough, but a few were visible

In the eastern sky, Lyra had just cleared the trees when we started observing (at 9:15 or so), and all of Cygnus was above the trees when we finally shut down at 12:45 AM. In addition to tracing out the constellations, along the way we looked at:

  • Epsilon Lyrae, the Double-Double star
  • Albireo
  • Alpha Vulpeculae (the subject of my Binocular Highlight column in the ### issue of Sky & Telescope)
  • Brocchi’s Coathanger (Collinder 399)
  • Sagitta (just traced the constellation)
  • M27, the Dumbbell Nebula
  • Sadr and its surrounding ring of stars in the heart of Cygnus
  • NGC 7000, the North American Nebula – this and the Northern Coalsack were easily visible to the naked eye once Cygnus has risen out of the near-horizon LP

…and we just cruised the Milky Way from Cygnus to Cepheus, not singling out individual objects but just taking in the rich star fields.

But the southern sky was the best. Looking south from Santa Cruz Island, there’s only open ocean, broken here and there by other, distant islands and ultimately by Antarctica. It reminded me of looking south from Punta del Este in Uruguay, only I was in a valley instead of on a beach. The ridgeline to the south did cut off a bit of the sky, but we were still able to see all of Scorpio, including the False Comet, made up of NGC 6231 and Trumpler 24, which was one of the highlights.

It was trippy watching the Milky Way rise. I usually look at the summer Milky Way when it is higher overhead. I usually have to do that, because the objects aren’t visible in the near-horizon haze. But from Santa Cruz Island, things were not only bright but obvious as soon as they cleared the ridgeline to the south. It’s almost pointless to list them – we saw every Messier object in the “steam from the teapot”, from M7 and M6 in the south to M11 in the north, plus a lot of NGCs, plus star clouds and dark nebulae almost beyond counting. They were all great through the binoculars – M7 was a special treat, like a globular cluster on a diet – but honestly the best views of the night were naked-eye.

I realized that I am just never out observing the Milky Way at this time of year. My regular desert observing spots are all too hot in the summer, and when I do go there is often at least some light pollution to the south (El Centro from the Salton Sea, Barstow from Owl Canyon, etc.). I do most of my deep and dark observing in October and November, when the southern Milky Way is setting, not rising.

So I was completely unprepared for how much detail would be visible to the naked eye. When the Milky Way rose, it didn’t look like a band of light, it looked like a galaxy. I searched through a lot of photographs of the rising Milky Way to find one that approximated the naked-eye view, and this is the closest I got:

I am not exaggerating – the bright and dark areas were that defined. The Great Rift was visible from Cygnus to the horizon, and its southern border was notched by distinct deep sky objects from Aquila onward. The Scutum Star Cloud, M16, M17, M24, M23, M8, M6, M7, NGC 6281, and the False Comet were all easily visible to the naked eye as a chain of luminous patches against the dark dust lane of our own galaxy. In fact, I noted NGC 6281 with my naked eyes first, thought, “What the heck is that?”, and had to look it up. We also caught M4, M22, M23, and M25 in the bins, plus a bundle of dark nebulae that I’d never noted before and didn’t bother keeping track of.

Longtime S&T contributor Tony Flanders (now retired but still writing occasionally) is active on Cloudy Nights, and his sig file reads:

First and foremost observing love: naked eye.
Second, binoculars.
Last but not least, telescopes.
And I sometimes dabble with cameras.

Until fairly recently I would have listed my own preferences in reverse order, from telescopes to binos to naked eye. That may sound odd for a “bino guy”, which I guess I am since all of my ‘professional’ astro-writing has been binocular-based. But it’s true – as much as I love binoculars, I would have picked a telescope first. But I am – gradually, belatedly – waking up. In some ways, it would have been great to have a scope, any scope, along on the island trip. I’m sure that even the C80ED would have taken us crazy deep, considering what we could see with a pair of low-end 40mm roof-prism bins. But it would also have come between us and the sky, and I would have spent more time futzing with eyepieces and less time just looking up.

This was a surprising and welcome realization, coming so shortly on the heels of a frankly astonishing session with Ron’s 25-inch dob at RTMC. I was worried that big-telescope observing might spoil me, but that fear turned out to be unfounded. All I need to be happy is a dark sky. If I have some people to share it with, even better. Anything more is just cake at the end of an already long buffet.

Let’s eat.

h1

My article in the April 2016 Sky & Telescope

March 8, 2016

SnT cover April 2016 - annotated

Getting this posted a bit belatedly, as this issue has been on newsstands for about a week already. When I wrote about my first S&T article last year, I said that my editor, JR, and I had “batted some ideas back and forth and quickly settled on the winter Milky Way”. The other ideas didn’t go away, they just got put off. This binocular tour of the Virgo Messier galaxies is one of those other ideas. Hopefully more will be along in the future – assuming I’m successful in bringing them to fruition, and that the staff – and readers! – of Sky & Telescope continue to be happy with them.

Incidentally, although I aimed the article at binocular users, it should serve as a perfectly cromulent guide for telescopic observations as well.

Have suggestions for how I can improve? The comment field is open.

h1

My article in the December Sky & Telescope

October 31, 2015
SnT Dec 2015 cover - marked up

Einstein has my article on his mind!

Here’s the exciting news I teased back in September: the December 2015 issue of Sky & Telescope, which is available online and should be hitting newsstands about now, has an observing article by yours truly. It’s a binocular tour of the southern stretch of the winter Milky Way, from Canis Major through Puppis to end in Hydra.

SnT Dec 2015 contents - marked up

The road that led here started back in December, 2014, when I got a very nice email from S. Johnson-Roehr, “JR”, the observing editor for Sky & Tel. JR had stumbled across this very site (possibly because I’d just recommended the newly-reprinted Caldwell Objects?) and asked if I’d be interested in contributing an observing article. We batted some ideas back and forth and quickly settled on the winter Milky Way. I had been through this area of the sky before but I wanted to give it one more pass, both to flesh out my notes and to road-test the star hops I had in mind. I made those observations this spring, wrote the article over the summer, and now it’s out in the world.

I have one favor to beg of anyone who reads the article – I need feedback. This is my first time writing about astronomy anywhere but a blog, forum post, or club newsletter, and I’d like to know (1) what worked, (2) what didn’t, and (3) what you’d like to see in the future. The comment field is open.

There’s a lot more to like in this issue of S&T, some of which will be of particular interest to regular readers of this blog. Tony Flanders has another inexpensive telescope shoot-out. Back in 2011 he and Joshua Roth looked at $100 scopes, in particular the Orion SpaceProbe 3, GoScope 80, and SkyScanner 100 (that article is a free download here, and a follow-up comparing the SkyScanner to the StarBlast is here). This time Tony considers three scopes in the $200 range: the Meade Infinity 90mm refractor and alt-az mount, the Orion StarBlast 4.5, and the Astronomers Without Borders OneSky. I won’t give away any spoilers, except to note that he finds all three to be capable scopes, which I’m sure is no surprise around here.

Another nice review in this issue is Alan MacRobert’s look at the first two volumes of Jeff Kanipe’s and Dennis Webb’s Annals of the Deep Sky, from Willmann Bell. As a deep-sky junkie who likes to read himself to sleep with Burnham’s Celestial Handbook and Stephen James O’Meara, I have been curious about these new books, but I hadn’t heard anything about their quality before reading MacRobert’s article. Sounds like I need to make space on my Christmas list.

There’s loads more interesting stuff in this issue – cover articles on Einstein and gravitational waves, great observing articles by Alan MacRobert, Fred Schaaf, Gary Seronik, and Charles A. Wood, a very nice piece by Sue French looking at some neglected open clusters and double stars in Cassiopeia (an area I thought I knew well)…you get the picture. If you’re not a subscriber, you can find the December issue of Sky & Telescope on your local newsstand, or order a print or digital copy online here.

If you’re new here, welcome! Have a look around, and feel free to comment.

h1

A birthday observing run at the Webb Schools Hefner Observatory

June 16, 2014
Spiral galaxy M81

Spiral galaxy M81

My birthday was June 3. That evening, fellow PVAA member Steve Sittig invited me up to the Hefner Observatory at the Webb Schools in north Claremont. Steve teaches science at the Webb Schools, and he has a particular interest in physics and astronomy. The dome at the Hefner Observatory houses an orange-tube C14 Schmidt-Cassegrain. Observing with us were two other Webb faculty members, Andy Farke (paleontologist, blogger) and science teacher Andrew Hamilton. Andrew Hamilton had brought along his DLSR, a Sony Alpha33—this would turn out to be important.

Starburst galaxy M82

Starburst galaxy M82

We got started a little after 9:00 PM with a look at Jupiter, which was low in the west. We noticed right away that the seeing was pretty darned good. We went on to the waxing crescent moon and then Mars and Saturn. After that we turned to the deep sky. M81 and M82 looked great, so we hooked up Andrew’s DSLR and attempted some photography. We didn’t have a remote shutter or computer control, so we were using only the camera’s native controls, and assessing the results on the LCD screen.

Planetary nebula M57, the Ring Nebula

Planetary nebula M57, the Ring Nebula

After the galaxies, we went on to the Ring Nebula, M57, and then the Great Globular Cluster in Hercules, M13. Even with the 30-second exposures that the camera was natively limited to, we were getting very respectable images. I am including a few here.

M13, the Great Globular Cluster in Hercules

M13, the Great Globular Cluster in Hercules

Our results were pretty primitive compared to what people can do with dedicated astro cameras and post-processing, but we still had a grand time, and the process was sufficiently rewarding that we stayed out until almost two in the morning. All in all, a pretty darned good birthday present. Hopefully we’ll be able to reconvene and shoot some more this summer. I’ll keep you posted.

Many thanks to Andrew Hamilton for permission to post these photos.

h1

A hydrogen bomb detonated against your eyeball

November 28, 2013

…would deliver less energy to your retina than a supernova observed from a distance of one astronomical unit (AU; the distance from the Earth to the sun). How much less? From this XKCD What If:

Which of the following would be brighter, in terms of the amount of energy delivered to your retina:

A supernova, seen from as far away as the Sun is from the Earth, or

The detonation of a hydrogen bomb pressed against your eyeball?

Applying the physicist rule of thumb suggests that the supernova is brighter. And indeed, it is … by nine orders of magnitude.

That rocked me back on my heels. And it got me thinking: how far away would one have to be for a supernova to be only as bright as an h-bomb pressed against one’s eyeball?

H-Bomb

Radiated energy is subject to the inverse-square law, by which intensity of radiation is inversely proportional to the square of the distance. So the answer  to my question is the square root of billion in AU, which is 31,623 AU, which is almost precisely half a light year. (BTW, Google will translate AU to light years for you!)

So if you’re close enough to a supernova that the light takes six months to reach you, it will still be like being nuked at point-blank range.

How far away from a supernova do you need to be to be safe? According to this article, even at a distance of 3000 light years, a supernova could still wreck the ozone layer of an Earth-like world.

Even more suprisingly (to me, anyway), the 1006 and 1054 supernovae apparently left detectable chemical traces on Earth, despite being 7200 and 6500 light years away, respectively. From farther down in the same article:

Gamma rays from a supernova would induce a chemical reaction in the upper atmosphere converting molecular nitrogen into nitrogen oxides…. In 2009, elevated levels of nitrate ions were found in Antarctic ice, which coincided with the 1006 and 1054 supernovae.

Amazing. The 1054 supernova is near and dear to my heart. Its visible remnant, the Crab Nebula, is also catalogued as Messier 1. I have observed it dozens of times, most notably during my nearly-annual Messier Marathons. I had no idea that it had literally left its mark on Earth.

So, here’s something to be thankful for this Thanksgiving: there are no particularly good supernova candidates close enough to Earth to pose a serious threat. All of the contenders are not massive enough yet (if they’re white dwarfs) or too far away, or won’t blow for millennia, or some combination of the above. So you can tuck in with abandon. We could still be annihilated at any moment by death from space–just ask the folks in Chelyabinsk–but it probably won’t come in form of a supernova.

Hat tip to Mike.

h1

Observing Report: Night of the Refractors redux

November 20, 2013
IMG_1261

From left to right: my TravelScope 70, my C102, David’s C102. When I took this picture, we hadn’t put the finders on the big scopes yet, or gotten my stand-alone GalileoScope set up yet.

This one is a little late: David DeLano and I spent the night of Sunday, November 3, observing at the Salton Sea. This is the belated observing report.

We met up at the visitor center at the headquarters campground. We rendezvoused there a little after 3:00 in the afternoon because we had some things to do before sunset, which because of the time change was coming at 4:50. The visitor center gift shop has a little astronomy section and both of us picked up a copy of the Sky Atlas for Small Telescopes and Binoculars, by Billie and David Chandler–more on that atlas another time. David also picked up a nice plasticized version of the Chandler planisphere.

Chandler Sky Atlas

After that we drove down to my favorite spot at the Sea, which is the south end of the Mecca Beach campground. A couple at another site were loading up as we were pulling in, and the left a few minutes later. After that, we were the only humans at the campsite all night long, except for someone in the late evening who pulled in, turned around, and left, all without stopping.

Our first activity was dinner at a picnic table in the shade. We split the gear and groceries like so: David supplied firewood and snacks, and I brought dinner (Subway sandwiches) and cooked breakfast (pancakes).

IMG_1243

Even as we were eating, the second activity commenced: the exchange of hostages. As far as I can tell, David is a hot rod mechanic who happens to work on small refractors instead of cars; if that strikes you as hyperbole, just read on. Anyway, he’s way more adept at getting refractors to sing than I am, so I had brought him an unfinished Carton 60mm f/15 refractor and a couple of small objectives that I had rescued from otherwise unsalvageable garage sale scopes. To transfer into my care, David had brought a nice Celestron 2-inch star diagonal for my C102, and–most importantly–a GalileoScope that he had built and modded for me.

Galileo is Rocking Out in His Grave

The GalileoScope was created for the International Year of Astronomy in 2009, when it originally sold for $15. That was mostly down to economy of scale; now that sales have cooled, the price is up to about $50. It’s still a lot of telescope for that price. David’s GalileoScope mods have been featured here before.

The stock GalileoScope is a straight-through instrument with an f/10 objective and a push-pull focuser, which you aim by looking along some gunsight-style ridges on top of the OTA. My GS has had its tube chopped to accommodate a Stellarvue 90-degree diagonal with a helical focuser (the #D1026AF unit here, if you want one for yourself), and has a Daisy red-dot finder perched on the forward gunsight.

IMG_1242

Above, my nicely tricked-out GalileoScope. Bottom, David’s insanely modded version–possibly the most attention anyone has ever lavished on a cheap build-it-yourself 50mm refractor.

Lest you get too jealous of my pimped-out GalileoScope, let me describe David’s own GS. He got the aftermarket f/11 objective kit, which lengthens the light path enough to allow the use of a diagonal without chopping the tube. At the back end of the scope, there’s a 2″ Crayford focuser (yes, you read that right) with a 1.25″ adapter. His diagonal also has a helical focuser for fine-tuning; in fact, in use I forgot about the Crayford and used the helical focuser exclusively. At the front end, there’s some kind of fancy RDF, sold by Cabella’s for use by hunters, with the largest eye-lens I’ve ever seen apart from the “boxy” astro-only unit-power finders, the Telrad and the Rigel Quikfinder. A set of nice rings with Delrin-tipped screws completes the instrument, and allows David to mount it coaxially with his larger scopes as possibly the most awesome luxo-finder-slash-second-instrument that I’ve ever encountered (on a small scope; the 9.5-inch refractor mounted on the 12-inch Zeiss in the Griffith Observatory probably takes the cake for larger instruments).

David’s GS really must be seen to be believed. Once on the Dinosaur Mailing List, Mickey Mortimer wrote, “Looks like it’s time to over-technicalize this previously tame post.” I can’t think of David’s GS without those words going through my mind. I wouldn’t be surprised if it is the most extensive hack anyone has done on a GS. It is definitely the most badass.

I should mention that getting both of the GalileoScopes to work as well as they do involved a lot more than just throwing some nice parts on. It required a lot of work and thought and experimentation. Happily, David documented the process and will have a guest post about his adventures in GS-hacking in the not-too-distant future. So stay tuned for that.

IMG_1266

David’s GS mounted on his C102 as the luxury finder to end all luxury finders.

After dinner and the exchange of hostages, it was time to set up scopes. I was rolling with the C102/SV50 combo again. I also set up the TravelScope 70 just to have something different to plink around with. David set up his second tripod for my GS, and put his mod-tastic GS on his own C102, using a third tube ring to support the GS stalk and rings. This makes for an imposing setup. I studied it as intently as an American astronaut getting his first look under the hood of a Soyuz capsule. We used some antennas on a distant mountaintop to get everything aligned, and then almost immediately we were off and running.

Skyward!

Our first target, at 5:30, was Venus. There wasn’t much to see–basically a very bright half-circle–but checking in just feels like the right thing to do.

Next we turned to the Double Cluster and Stock 2 and spent a few enjoyable minutes tracing out the loops and chains of stars in our various instruments. Like last time, I could see the red stars in NGC 884, and if anything they were easier this time since I knew what to look for.

After that we turned south and did a big tour of the Sagittarius/Scutum area, eventually going north into Aquila and then west through Serpens to Ophiuchus. But I’m getting ahead of myself.

We started with the teapot asterism in Sagittarius, and let that guide us to M8, the Lagoon Nebula. Then we hopped up just a bit to M20 (the Trifid Nebula) and the open cluster M21. After that we took a break to hit M13 in Hercules before it sank down into the light dome over Palm Springs. We returned to Sagittarius with globs on the brain and took in M22, which I thought was a serious contender in the field of majestic globs. Then it was up to the M24 star cloud, where we got lost for a few minutes at the sight of literally thousands of stars in our eyes. Somewhere in Seeing in the Dark–and irritatingly I cannot find the passage right now–Timothy Ferris describes a swath of the sky, possibly M24, as a “wonderland of far-flung suns”. Whether he intended it for M24 or not, it’s an apt description.

At the risk of letting my current bout of refractoritis get the best of me, I must say, the view of M24 through the C102 was just breathtaking. Now, I have visited M24 before, many times. It is one of my favorite places in the sky. But I had not taken a good look at it through a decent-sized refractor under dark skies. The contrast was superb: against a jet-black background, the stars were so finely graded by brightness that I noticed rivers and shoals among them that I had never been aware of before, including a current of brighter stars running north-south and paralleling the Milky Way. Truly, this is the backbone of night.

But even in a palace, one can want for variety (or so I’ve heard), so we ventured onward. Past the open cluster M18 we came to the Swan Nebula, M17, very bright and clear and looking just like its namesake. Then farther up we found M16, the Eagle Nebula, its tendrils of glowing gas wrapped around a dense cluster of newborn stars. Then back to M24 to pick up the open clusters M25 and M23, which attend the majestic star cloud like obsequious courtiers. M25 is one of my favorites; it sits at the center of a curving arc of stars that David describes as a spiral, but that to me has always looked like a fishhook, with M25 as the bait.

After working through all of those objects with the scopes, we stopped for a binocular tour. I had along my Nikon Action 10x50s and David was rolling with his Nikon action 10x40s. I found that if I held David’s green laser pointer between two fingers of my right hand and the binoculars, I could aim the laser beam at the center of my field of view. We shared many sights over the course of the evening using this trick. For starters, we revisited all of the Sagittarius clusters and nebulae mentioned above, and picked up the little glob M28 as well.

DeLano 1 chart - wide

The asterism “DeLano 1” next to Mu Aquilae. It is much more obvious than this Stellarium view shows, and looks more like a bright open cluster.

Then we turned north to Scutum and Aquila. Our first stop was M11, the Wild Duck cluster. Then I took a break for bathroom and snacks, and David went crazy finding new things. When I got back to the scope, I had some catching up to do: the open clusters IC 4756 in Serpens, and NGC 6633 and IC  4665 in Ophiuchus. David had also discovered something pretty that was not listed on any of our charts: a small group of bright stars just north of Mu Aquilae. So far I have not found this listed anywhere as a named object; for the heck of it we called it DeLano 1.

DeLano 1 chart 2 - narrow

A closer view of DeLano 1.

Zoom Zoom Zoom

I see that I have not mentioned what I was using for eyepieces. Thanks to the 2″ diagonal I could use my 32mm Astro-Tech Titan, which gives a wider true field than any other eyepiece I own. In the C102 it gives a magnification of 31x and a 2.2-degree true field of view, which was great for framing almost everything we looked at (the Pleiades fit with a little room to spare, even). My only other 2″ or dual-barrel EPs are the 21mm and 13mm Orion Stratus EPs, which I used infrequently Sunday night. When I wanted more power, I put in the 1.25″ adapter and my new toy, the Celestron 8-24mm zoom eyepiece.

My only previous experience with a zoom EP was a Scopetronix 7-21mm, which was pretty stinky. Zoom EPs always have wider apparent fields of view at high magnification and narrower AFOV at low magnification. That is pretty much the opposite of ideal, but physics is physics, and the comparatively narrow apparent field is tolerable as long as it doesn’t get too narrow–below about 40 degrees you feel like you’re looking through a soda straw. Unfortunately, with the Scopetronix zoom, the AFOV started at 40 degrees (at high mag) and ended up somewhere below 30, at which point the image is so small you might as well be looking through the other end of the telescope.

Happily the Celestron 8-24mm zoom has a more generous AFOV. The stated range is 40-60 degrees, and that seems about right to me. What’s not so great? It’s not parfocal across its magnification range (I don’t know how many zoom eyepieces are), so you have to refocus as you change magnification. Also, it’s a little soft at high power. Not egregiously so, but my 8.8mm ES82 is not going to be losing any sleep. On the plus side, it’s decent, convenient, and at a current street price under $55, dirt cheap.

Incidentally, this is the danger of getting a couple of high-end eyepieces: they are so sharp and so clear that when you go back to merely average EPs, the differences are immediately noticeable. It makes you spoiled.

Lyra, Cygnus, Vulpecula, and Sagitta

After I got caught up in Ophiuchus, we turned north, first to Polaris and the “Engagement Ring” asterism, and then to the Lyra/Cygnus/Sagitta area.

Naturally our first stop was Epsilon Lyrae,  the “double double” star, which was cleanly split at 125x with 8-24mm zoom. So if you’re curious about that eyepiece, there’s a point in its favor.

After that we followed my usual J-shaped path through this  region: from the Ring Nebula, M57, on past the fair-to-middlin’ glob M56 to the brilliant, contrastingly-colored double star Albireo. Like a lot of double star observers, I like doubles when they’re not too widely split, and at 31x the 32mm Titan and C102 gave perhaps the best view of Albireo I’ve ever had in a scope. After Albireo, go straight south to find Collinder 399, better known as Brocchi’s Coathanger. Southwest of the Coathanger one comes to the pair of closely-spaced, equally-bright stars that mark the feather end of the constellation Sagitta, the arrow. Halfway along the arrow a zig-zag pattern of stars leads to the faint glob M71. Then proceed along the arrow to the third bright star up from the feathers and hang a right to find M27, the Dumbbell Nebula.

The Dumbbell does a neat trick as either one’s scope or one’s sky conditions improve. From a small scope, or a big one under city lights, it looks like a bow tie. As things get better, the ends of the bow tie sprout extensions to either side, so the nebula starts to look more like an apple core. Finally the area to either side of the apple core starts to fill with nebulosity, so the nebula ends up looking like a football with a bright band–the former bow tie/apple core wrapped around its “waist”.

10-04-2008_DumbellThe football form of the nebula is obvious in most astrophotos of M27. Here’s a nice example by Rogelio Bernal Andreo (DeepSkyColors.com) that shows the different aspects in different colors: white bow tie center, red apple core extensions, blue football wings. I have seen the football before in the XT10, but I had never seen it in a small scope before Sunday night. And, to be clear, the C102 did not show the entire football. But it did definitely show the wisps of nebulosity extending out on either side of the apple core. It’s probably  best to say that M27 was halfway between  the apple core and football forms. It was missing the crisp cut-off at the edge of the football, which the XT10 will show under sufficiently dark skies. But it was still way more than I expected. I am still learning what a 4-inch scope with high contrast can do under dark skies; the answer is, “an awful lot”.

The striking appearance of M27 can in part be chalked up to excellent transparency in the early evening. Another example is that both of us could clearly make out the North American Nebula, NGC 7000, in the binoculars. My best-ever views of the nebula have been with 15×70 bins out at Owl Canyon. I have caught glimpses of it in the 50mm glasses before, but never as good as it was Sunday night. David was getting it clearly in his 40mm bins, which is pretty amazing.

We did another binocular tour in this area, hitting all of the objects listed above as well as M29, M39, the heart-shaped asterism around the bright star Sadr in the heart of Cygnus, and the wide blue/orange binocular double Omicron Cygni. This was about 8:30 PM, four hours into our 9-hour run.

This is pretty much how we proceeded for the rest of the night: pick an area, figure out some of the best and brightest objects therein, and hop our way through them. David was working off the Evening Sky Map and suggesting objects from its lists, and I was working from the PSA and rediscovering some goodies I hadn’t seen in a while. Rather than give an exhaustive list of everything else we saw, I’ll just list some highlights:

NGC 253 and NGC 288 – NGC 253 is the Silver Coin Galaxy. It’s up there with Andromeda (M31), the Whirlpool (M51), the Sombrero (M104), and Bode’s Nebulae (M81 & M82) as one of the best galaxies for northern hemisphere observers. My first view of it was in binoculars from Big Bear Lake, and under those dark mountain skies it looked as good in the 15×70 bins as a lot of galaxies look through a telescope. Mottled details is visible in even small scopes under sufficiently dark skies. While you’re in the area, might as well drop down about one eyepiece field and pick up the globular cluster NGC 288.

NGC 7789 – Here’s one I’d seen before but forgotten about. This is a nice open cluster off the tip of Cassiopeia, sandwiched between two small groups of bright stars. There are a lot of open clusters in Cassiopeia–we did a third binocular tour that encompassed NGC 457, NGC 436, M103, NGC 663, NGC 659, NGC 654, and Cr 463–but NGC 7789 might just be the best, not only for its inherent charm but for the rich surroundings in which it is set.

M37, M36, M38 – This is the famous trio of open clusters in Auriga, which are among the most popular and  most visited objects in the winter sky. The one that impressed us the most Sunday night was M37, the lowest (east-most) one. It is a dense swarm of tiny stars, which David described as “crystals”, and which to me looked like the proverbial scattering of diamonds on black velvet.

M46, M47, M93 – These open clusters in Puppis are also popular winter objects, especially the close pair of M46 and M47. I suspected the planetary nebula NGC 2438 in M46, which I first spotted at the All-Arizona Star Party back in 2010. Since then, I always look for it, and when I do spot it, I wonder how I was able to go  for so long without seeing it.

M76 – This is the Little Dumbbell Nebula in Perseus, and one of just a handful of planetary nebulae in the Messier catalogue (the others are M27, M57, and M97). As its name implies,  the Little Dumbbell is the smallest and probably least impressive of the Messier planetaries, but I’ve always had a fondness for it. Although small, it has a high surface brightness so it’s not hard to spot if you know where to look, and it is not without its charms.

Planetary nebulae illustrate why the Messier catalogue is a two-edged sword. On one hand, the Messier catalogue does include some best-of-class objects in almost every category of DSO; on the other hand, there are numerous objects in other catalogues that outshine (sometimes literally) the less impressive Messiers. For galaxies, you have things like the Silver Coin and NGC 4565 in Coma Berenices; for open clusters, look no farther than the Double Cluster in Perseus and NGC 663 and NGC 7789 in Cassiopeia; for diffuse nebulae, see the Flame Nebula (NGC 2024), the Rosette (NGC 2237), and the Christmas Tree or Cone Nebula (NGC 2264).

But planetary nebulae get especially short shrift; a quick-and-dirty list of impressive non-Messier planetaries in northern skies includes the Cat’s Eye (NGC 6543), the Eskimo (NGC 2392), the Saturn (NGC 7009), the Ghost of Jupiter (NGC 3242), and the Blinking Planetary (NGC  6826). This is not because Messier had anything against planetaries but because his catalogue was discovered rather than assembled post-hoc, and discovery is always a haphazard process. Still, we are not discovering these things for the first time, and with their often high surface brightness and charming array of forms, planetary nebulae are great targets for beginning and city-bound observers.

By 2:00 AM we were winding down, and so were the skies. A cloud mass that had been hovering over Palm Springs started to send forth offspring, and the haze near the horizon was getting worse. A bright star in Leo that I just couldn’t place turned out to be Mars. We had one last look at the Double Cluster and called it a night.

It was one of the most fruitful observing runs I’ve ever had. By my count, we looked at:

  • 49 Messiers
  • 20 NGC, IC, Collinder, etc., objects
  • 4 double stars (counting Epsilon Lyrae only once)
  • 4 asterisms (DeLano 1, the Engagement Ring around Polaris, the Heart around Sadr, and Kemble’s Cascade)
  • 3 planets (Venus, Jupiter, Mars)

So about 80 things in the sky, not counting the numerous shooting stars, which we noted every few minutes all night long. That is by far the most things I’ve seen in one evening when I wasn’t doing a Messier Marathon. But we weren’t rushing or trying to get through a ton of objects, we were just basically out for a spin, and if you cruise around the sky for 9 hours, you are going to end up seeing a lot.

Lessons

I came away from the evening with a couple of firm directions for future observing.

First, I don’t think I logged anything that I hadn’t seen before (DeLano 1 excepted!), but I saw a lot of stuff that I had forgotten about, like NGC 7789. Most of these were things that I had visited in the course of doing one or another Astronomical League observing program. That’s great because those programs have helped me to learn the sky, and they’ve introduced me to a lot of wonderful objects that I hadn’t seen before. But now that I know the sky, I need to go back and re-observe those things and spend a little more time with them. This is especially true of the many beautiful clusters on the Deep Sky Binocular observing list–I am ashamed to say that there are many of those that I still have not visited with a telescope. So even my terra cognita holds some wonderful things waiting to be rediscovered.

Second, I need to go south (in the sky)! Here’s some relevant math: the Salton Sea campgrounds are at about 33 degrees north latitude. That means that Polaris is 33 degrees above the northern horizon, the celestial equator is 57 degrees above the southern horizon, and with no intervening landforms or atmosphere I should be able to see down to -57 degrees declination when I look south. Now, in practice the near-horizon haze makes the last few degrees pretty worthless. But I have seen the globular cluster Omega Centauri with my naked eyes from the Salton Sea. At -47 degrees declination, it never gets more than 10 degrees from the horizon. If it’s naked-eye visible that low under good conditions, then binoculars and telescopes will reveal much more at the same declination, and maybe even a little lower.

In practice, I have explored almost none of that southern expanse. I am used to thinking of the Silver Coin galaxy as a far southern object, but at -25 degrees it culminates a full 32 degrees above the horizon–more than a third of the way to the zenith! Except for sighting Omega Centauri a couple of times, I have not deliberately gone south of about -30 degrees declination (and I’ve only gotten there in the area around the “tail end” of Canis Major), which leaves a LOT of unexplored sky out there. I was fortunate to get to see most of the best of the southern hemisphere sky when I was in Uruguay in 2010 and it was amazing. Much of what I saw there is visible from here, I just haven’t looked. I need to fix that.