Archive for the ‘Herschel 400’ Category


Marking up sky atlases

February 4, 2017

I’m a book lover. Any space I’m in for long will have books on every available surface and piles of extras on the floor. Because of this love of books, for a long time I wouldn’t mark them up. This hands-off reverence extended to my sky atlases. But eventually I realized that sky atlases are tools, not heirloom pieces, and anything that makes them more useful when I’m observing is justified.


Here’s a representative page from my working copy of the Pocket Sky Atlas (I also have a second copy, autographed by John Dobson, that actually is an heirloom piece now). The circles and polygons flag objects from various Astronomical League observing projects. Triangles are double and multiple stars, rectangles are Herschel 400 objects, big circles are for the Binocular Deep Sky objects, and an open letter C designates Caldwell objects. I also drew in the position of Almach, which is just off the edge of this chart, wrote in the number for the multiple star 57 Persei, and wrote down the magnitudes of Algol and some of the useful reference stars, including Almach. Arrows in the margins are left over from my Caldwell tour.

I’ve finished all of those projects except the Herschel 400. You’ll see that some of the little rectangles have a diagonal slash across one corner – that’s how I flag which ones I’ve already observed. I’ve actually seen all of the H400s on this chart, I just got lazy about marking them off in the atlas. But I did write ‘CLEAR’ in the corner of the page so I know not to waste my time looking for unobserved H400s here. Other pages have the numbers of the H400s I still need written in the margins, for quick sorting and bookkeeping at the eyepiece.

These marks are very helpful while I am working on a project, because I have an instant visual reminder of what’s available to see in any given stretch of sky. And once I’m done with a particular project, the marks still point me to a lot of ‘best in class’ objects that I might otherwise overlook or forget.

Oh, I also sketch in the positions of comets from time to time, with the dates of observation.

This method has worked so well for me that I have thought about picking up extra copies of the PSA (for $13!) just so I could mark them up with objects from other observing projects. I’ve done that with a couple of my other atlases. My copy of the Cambridge Double Star Atlas has all of the AL Binocular Double Star targets marked, and I use my Jumbo PSA (which is ridiculously useful) to keep track of targets from the last several years of Sky & Telescope’s Binocular Highlight column, to help me avoid repeats. Of course I have other lists for all of these things, both physical and digital, but it’s nice to have an easy reminder when I am out observing or doing desk research.

Do you mark up your atlases? If so, what system do you use? Let me know in the comments.


Observing Report: All-Arizona Star Party 2014

October 30, 2014


AASP 2014 - loaded for bear

If it’s late October or early November, it must be time for the All-Arizona Star Party. London and I headed out for it this past Saturday, Oct. 25. As in 2012, we were joined by the indefatigable Terry Nakazono. Here Terry and London pose for the obligatory “look how much crap we crammed into the car!” photo.

We arrived at the site about an hour before sunset, plenty of time to set up camp and chat with the neighbors. As usual, we set up not far from Darrell Spencer and AJ Crayon, but irritatingly I failed to get a picture with Darrell, my first such lapse.

AASP 2014 - setting up in the shade

When we arrived the sun was still well above the horizon and temperatures were in the mid-90s. London and I set up our scopes on the east side of the car so we could sit in the shade. Here London is tinkering with his AstroMedia 40mm “plumber’s telescope”, which we just built last week. More about that scope in a future post. The scope behind London was another AASP newcomer.

C80ED newly arrived 1600

This is my new Celestron C80ED. This scope originally retailed for about $500. Celestron donated all of the remaining stock of the spotting scope version to Astronomers Without Borders, and AWB sells it for $350 with free shipping. Vicki got me one for our anniversary last week (and I got her some leather boots–in both cases, the choice of gift was, ahem, heavily influenced by the recipient). The package arrived on Thursday about half an hour before the partial solar eclipse was to start, so I just had time to take this photo before I ran out the door to London’s school.

I got this scope because it filled a hole in my lineup. My Maks have sharp optics but can’t do wide fields. The TravelScope 70 can do wide fields but still has limitations, even after its tune-up. And the C102 is a wonderful scope but not exactly small, and although its chromatic aberration is minimal it is still there. I figured a small ED scope could be a grab-n-go that could deliver wide fields like the TS70, take magnification on planets and double stars like the Maks, in a more convenient and false-color-free package than the C102. Plus I’d just always wanted to try an ED scope. I was going to get an AstroTech AT72ED but they are out of stock and have been for ages. The C80ED offered a small but significant aperture boost for less dough, so I bit–or rather, encouraged Vicki to do so.

I was going to bring both the C102 and the C80ED, but as the date got closer I decided that what I really wanted to do was put the C80ED through its paces under those dark Arizona skies, and another scope would just be a distraction. I had briefly set up the C80ED on Friday night to make sure the scope didn’t have anything seriously wrong. It didn’t–in fact, it star-tests as well as any scope I’ve ever owned.

AASP 2014 - refractor city

Turns out we were all rolling with small refractors. From left to right they are the C80ED, London’s 60mm Meade refractor, Terry’s Orion Short-Tube 80, and London’s 20×50 Orion spotting scope (reviewed here). Terry had been going to bring a 4.5-inch reflector but the Clear Sky Chart said that conditions were iffy. Also, like me he had been interested to see how deep he could push a small refractor under dark skies.

Incidentally, after bringing my XT10 to the AASP in 2010 and 2012, I brought the Apex 127 last year and now an 80mm refractor this year. At this rate, in a couple more years I’ll be down to bringing just a finderscope. (I jest, but I have had a longstanding interest in going to a dark site with only the SV50 or GalileoScope to see how many things I could see with a small scope under dark skies–so far, greed for photons has always won out, so this project remains unattempted).

AASP 2014 - moon in C80ED

Our first target of the evening was the waxing crescent moon. I got a few shots with the iPhone shooting through the C80ED. Here’s the best one. All I did was crop it and flip it left to right–other than the orientation change, the actual pixels have not been tinkered with at all. Note the absence of false color. I also put the scope on Vega early in the evening and could not detect any false color–very impressive.

On the drive out, Terry asked me if I had any plans or goals for the evening. I did have a few:

  • above all, spend some time observing with London;
  • look at some familiar objects to get a feel for the scope;
  • track down some southern objects, since I’d be at a dark site with a clear and dark southern horizon;
  • to the extent that I could, test the scope on challenging targets like globular clusters and close double stars.

And that is more or less what I actually did.

A word about the sky conditions before I get into actual observations: they were not fantastic. Seeing was lousy the whole night, with the stars twinkling visibly all over the sky. Transparency was good in the early evening but around 9 or 10 a very light haze set in across the whole sky. It wasn’t ghastly, but it noticeably knocked down the contrast–where the Milky Way had blazed overhead at 8:00, by 10:00 it was just sort of there, visible but not nearly as prominent. In my notebook, I rated the seeing at 2 out of 5 and the transparency at 3 out of 5.

I only used four eyepieces for most of the night:

  • 24mm ES68, which in the C80ED gives a magnification of 25x and a true field of 2.7 degrees
  • 14mm ES82 (43x, 1.9*)
  • 8.8mm ES82 (68x, 1.2*)
  • 6mm Expanse (100x, 0.67*)

I did use a 32mm Plossl to drop the power down to 18.75x to see if Polaris could still be split (it couldn’t, but read on), and I used a Barlow once. Other than that, it was just these four, and out of these four, I used the 24mm and 8.8mm EPs significantly more than the other two. I had planned to use the 8-24mm Celestron zoom, but in testing the scope Friday night, I could tell that the Explore Scientific eyepieces were noticeably sharper. Good heavens, I think I’m turning into a refractor weenie and an eyepiece snob.

After the moon we visited Mars, but it was tiny and featureless and fairly burning in the bad seeing. Then I swung next door to Sagittarius and got my first surprise of the evening: the big glob, M22, was partially resolved even at 25x with the ES68! I love globs–they are one of my chief joys in observing with the XT10, and I expected them to be dim, featureless cottonballs in the C80ED. That I was getting partial resolution on one in a small scope at low power was pretty arresting. I had a quick look at M28, M8, and M24, and then helped London get his 60mm on target on M22, M28, and M8. London was interested in seeing a double star so we wheeled the scopes around and had a look at Mizar and Alcor. Then we looked at M13, M57, the Pleiades, the Double Cluster, and Stock 2 in his 60mm.

AASP 2014 - our camp

Highlights of the Evening: M13, M57, M27

After all that, London went to lie in the lounge chair and watch for shooting stars–he got 17 before he went to sleep around 10:30. I went on to M13, the Great Globular Cluster in Hercules, and had my socks knocked off. Like M22, it was partially resolved even at 25x, and much better at 68x and 100x. It wasn’t fully resolved, of course, and the XT10 will blow away the C80 on this or any other glob, but it was at least a ball of many, many stars and not just a fuzzy blob. Here’s one of the nice things about widefield eyepieces and short focal length scopes: you get huge fields even at reasonable magnifications. At 68x in the 8.8mm ES82, I could park M13 comfortably inside the field stop and watch it drift across the field of view for more than four minutes. Even at 100x in the 6mm Expanse, I could watch the cluster drift across the center of the field for a bit over two minutes. I commented to Terry that if I hadn’t had other things I wanted to see, I could have kept watching M13 all evening and been very happy.

Lyra was still pretty high overhead so I went there next. Epsilon Lyrae was shimmering in the bad seeing. It was elongated at 68x and almost split at 100x, but I had to Barlow it up to 200x to get a clean split. You may recall that under better conditions, the TravelScope 70 split the Double-Double at 133x, and I know that it is often split at well under 100x by high quality small refractors. So the high magnification required for the split here reflects more on the quality of the seeing than on the quality of the telescope. I’m looking forward to seeing how the C80ED performs on Epsilon Lyrae on a better night.

M13 was probably my favorite view of the night, but a close runner-up was M57, the Ring Nebula. It was clearly ring-like at 68x, but I liked it even better at 25x–the expansive 2.7-degree field of the ES68 showed the nebula nicely framed between Beta and Gamma Lyrae (the stars that mark the south end of the constellation stick-figure) and their attendant stars. It reminded me of the view of the Ring at 12.5x in the TravelScope 70 back in 2012, which is what got me into refractors in the first place.

After that I spent a few pleasant minutes rocking through the Lyra-Cygnus-Sagitta axis, observing M56, Albireo, Brocchi’s Coathanger (Cr 399), M71, and M27. Interestingly, the view of the M27 was very similar to the one I had through the C102 at the Salton Sea last year: I could not only see the “apple core” extensions, but also some of the “football” nebulosity between those extensions. That is a lot of nebulosity to pick up in an 80mm scope. I wonder what I could see on a night with better transparency.

By now it was about 8:50 and I knocked off the serious observing for a while. First I went to hang out with London, and while he watched for shooting stars, I used the 15×70 bins to sweep up many of the same summer showpieces I’d just seen in the telescope: M57, M56, Albireo, Cr 399, M71, M27, M13, the Double Cluster, some of the nice NGC open clusters in Cassiopeia. Then some folks from the other end of camp stopped by and we chatted for a while. Darrell came over and had a look at M13, and London and I went down to the center of camp to get some hot chocolate. When we got back, London sacked out. I had a quick look at M11 before it set, and tracked down the asterism DeLano 1 just to make sure it was still there. Then, at Terry’s suggestion, I tried M15, the big glob off the nose of Pegasus. Here are my unedited notes:

M15 – tough nut to crack. Starting to look grainy at 100x. Also pretty grainy at 68x in 8.8mm ES82. Even though it only gives about 2/3 the magnification of the 6mm Expanse, I think the 8.8mm ES82 shows almost as much. It’s just a superior piece of glass. Another ES82 or 68 in the 3-5mm range should be priority.

Now, this idea that the 6mm Expanse is maybe not 100% awesome–hold onto that thought, we’ll revisit it at the end of the evening.


Go South, Young Man

Ever since my incredible Salton Sea run with David DeLano last fall, I have been painfully aware of how much I’ve neglected the southern sky. So from 10:45 to 12:30, that’s where I went. My first southern target was NGC 7293, the Helix Nebula. It was dead easy to see once I got there, but it took me an unusual amount of faffing about to get on target. I was using the 6×30 straight-through correct-image finder that came with the C80ED. I’m normally a RACI man so using a straight-through finder took some getting used to. But I kinda like it, now that I have the hang of it.

After that it was onto some galaxies and planetaries: NGCs 55, 300, 288, 253, 247, 246, 720, and 779. NGC 288 and NGC 253 were nicely framed in the same field. NGC 288 is a globular cluster circling our own Milky Way galaxy, about 29,000 light years away, whereas NGC 253, the Silver Coin galaxy, is 11.4 million light years away, almost 400 times farther, and rivals our own Milky Way in size. So that pair has a bit of the M97/M108 ‘odd couple’ thing going on.

The not-quite-edge-on galaxies NGC 720 and NGC 779 were my only new objects for the evening. Both of them are on the Herschel 400 list, and bring my H400 tally to 175. I am starting to wonder if I will ever finish the Herschels–the only new ones I’ve notched in the past couple of years have been bagged at the All-Arizona Star Party. I gotta get out in the spring more. I’ve just about exhausted the fall Herschels, but there are hundreds of spring galaxies to observe in Ursa Major and the Virgo-Coma Cluster.

C80ED AASP 2014 2000

Orion and Points North

After almost two hours of faint fuzzies, I was ready for a change of pace. I turned east, toward Orion. The view was pretty great–the Trapezium was split into four components at only 25x, and the nebulosity seemed to go on forever. And yet, the subtle gradations in the nebulosity did not seem as pronounced as I had observed on other nights. Terry noticed the same thing observing Orion through his ST80. He thinks that the poor transparency was leaching some of the contrast out of the view, and I am inclined to agree.

Without a doubt, the strangest observation of the night was of NGC 1980, the field of nebulosity around Iota Orionis. When I looked right at the nebula, it was steady, but when I looked back at M42/M43, NGC 1980 would flicker in my averted vision like a bad fluorescent bulb. At first I thought maybe it was just my eyes, but I called Terry over and he reported seeing the same effect.

Now, I don’t think that the nebula was actually flickering. I suspect that through some quirk of eye/visual system physiology, it only seemed to flicker in averted vision.

Just to rule out the obvious distractors: we were parked on the very east end of the airstrip so there was probably no-one between us and Phoenix. Neither of us were using flashlights or any electrical gear at all while we were observing in Orion. Our nearest neighbors were about 50 yards to the NW and SW, and they’d all turned in for the night. So I’m about as certain as I can be that it wasn’t some terrestrial source that just happened to be shining into the eyepiece or objective lens. Also, we only noticed the flickering on NGC 1980, and not on the extended “wings” of nebulosity from M42, which were of similar brightness at their extremities.

Has anyone else seen anything like this, either for NGC 1980 or other DSOs? If so, I’d love to hear about it–the comment thread is open.

After Orion’s Sword I bounced around a few northern Messiers–M78, M1, M35 with NGC 2158 just starting to resolve behind it, M81 and M82 in the same field, and M97 and M108 in their own field. Midway through that tour I stopped to split Polaris. It was continuously split at 24x in the 24mm ES82, not split at 18.75x in the 32mm Plossl. This illustrates just how seeing-dependent double star splitting is–Friday night from my driveway, the seeing was even worse, and that evening Polaris was not continuously split at 25x, but it was a 43x in the 14mm ES82, and even at 28.5x in the 21mm Stratus. As indicated above, the seeing out in Arizona Saturday night was not awesome. One of my quests with the C80ED is to see how low I can go, magnification-wise, and still get clean splits on some of the classic double stars. Watch this space.

M97 and M108 were my last DSOs of the evening. After that I turned to Jupiter, and even at 68x I could see at least 4 belts. The Galilean moons were spaced about evenly, two on each side of the planet. Terry and I compared views of the planet through the C80ED and his ST80. We could get similar magnifications with our favorite short eyepieces: the 8.8mm ES82 gave 68x in the C80ED (FL = 600mm), and the 6mm Expanse gave 67x in the ST80 (FL = 400mm). So how did the scopes compare? Well, obviously the ST80 was throwing up a lot of false color, but I could detect the same four belts that I could in the C80ED, albeit not quite as crisply. More informative was the comparison of eyepieces. Terry had a 6mm Expanse clone from While were swapping all of these eyepieces between the two scopes–the 8.8 ES82, the 6mm Expanse, and the 6mm Expanse clone–I noticed something I had never spotted before: the 6mm Expanse threw up a huge circle of glare around Jupiter. Perfectly circular, like a lens flare, centered on Jupiter, and spanning out to the outermost moon on each side. The glare circle was there in the 6mm Expanse in both scopes. It was not there in either scope in the ES82, nor in the AgenaAstro Expanse clone. These are the Agena Enhanced Wide Angle (EWA) 6mm, which goes for $45 (you can find it here), and the 6mm Orion Expanse, list price $68, street about $59. So if you’re in the market for a 66-degree EP, you can save about 25% and get noticeably better performance from the Agena version. I’m tempted to get one myself, and hock the Orion EP. Until now, the 6mm Expanse has been one of my most-used EPs, but now that I can see its faults…like I said, eyepiece snobbery is taking hold.


Settling Up

After one last look at Jupiter in the ES82 at 3:00 AM, I shut down and went to bed. The next morning, London and I went on our customary “bone hike”, and we did find several bones, including a couple of cow limb bones, and the jackrabbit lower jaw shown in the photo. More exciting were the Western diamondback rattlesnake and the horned lizard that we found.


My final tally for the evening was 45 telescopic objects:

  • 2 planets (Mars and Jupiter)
  • 22 Messiers
  • 13 other NGCs
  • 2 asterisms (Brocchi’s Coathanger, DeLano 1)
  • 1 other catalogued DSO (Stock 2)
  • 5 double/multiple stars (Mizar/Alcor, Albireo, Epsilon Lyrae, Trapezium, Polaris)

…plus a couple of meteors.


Irritatingly, I realized later that I had completely missed out on some real gems. I never once pointed the scope at the Andromeda galaxy or its satellites–detail in M31 would have been a good test of the C80’s optics. And I skipped the nice open clusters in Auriga–M36, M37, and M38–which maybe more than any other set of clusters give that “diamonds on black velvet” feeling in a sharp telescope. We set up early enough that I could have rocked through all of the Sagittarius Messiers instead of the handful I actually saw, but I deliberately traded that time away to help London find some things, so I don’t feel bad about that particular omission. The others are a bit galling.

Even with those omissions, I still met all of the goals that I had set for myself: I got in some good observing time with London, I had fun touring the southern skies, even if most of the things I saw there were revisits, and I both got a feel for how the scope performed on average targets, and got to push it on some challenging ones. The biggest revelation to me was that an 80mm scope would start to crack open some of the bigger globs. M13 and M22 didn’t just look good, they looked stunning. I wish I was observing them right now.

In sum, a great night of stargazing, and a pretty thorough field test for the C80ED. I think I am going to have a LOT of fun with this scope.



Observing Report: All-Arizona Star Party 2012

October 17, 2012

The 10MA crew at AASP ’12. From left: me with my XT10, David DeLano with his SkyWatcher 100T, London with his AstroScan, and Terry Nakazono.

Last Saturday night London and I were out in Arizona for the 2012 All-Arizona Star Party. We’d been to the 2010 AASP–one of the finest nights of stargazing of my life–but we missed it last year, so it was great to get back out there. Terry Nakazono went with us. It was our third time observing together after a couple of Mt. Baldy runs this summer, and our first time under truly dark skies.

Happiness is a new scope under dark skies!

The big news for us was meeting frequent 10MA commenter David DeLano for the first time. David and I have been email pen pals for a couple of years now, and he’s written a couple of guest posts (sun funnel and diagonal comparison) but we’d never met in person before this weekend. He’s not unusually happy in this picture–in my admittedly limited experience, his grin is as much a feature of his face as his moustache. But he is pretty darned happy, because he was rolling with his dream scope this weekend, a 4″ f/10 SkyWatcher triplet apo that he’s owned for just a couple of months. This was only his third or fourth time using it, and the first time under dark skies.

Terry’s new Celestron NexStar 102GT–a.k.a. the Costco Scope. Photo by Terry Nakazono.

As luck would have it, Terry was also rolling with a new “big gun”, and it was also a 4″ f/10 refractor. His is an achromat, the Celestron NexStar 102GT, which he acquired even more recently. He calls it the “Costco Scope”, because apparently this particular package of scope and mount is only available in Costco stores. It’s a 4″ long-focus achromat on a fully motorized GoTo mount for $200 even, which is probably one of the best deals in telescopes right now. Terry showed me Barnard’s Galaxy and IC 342, another faint galaxy, through this scope, and I can confirm that it both pulls down the photons and gives a nice crisp view.

Loaded for bear. The padded grocery sack on the left covers the end of the XT10 so it doesn’t get dinged when I close the hatch. Photo by Terry Nakazono.

With Terry’s new scope and tripod–not to mention his tent and the rest of his gear–London’s AstroScan, my XT10, assorted camp chairs and sleeping bags and backpacks and water bottles and so on, our Mazda 5 was packed pretty full. Terry snapped this pic when we stopped for gas in Blythe.

The AASP was not just a chance to hang out with new friends but also to catch up with an old one. I hadn’t seen Darrell Spencer (on the left here, checking out David’s SkyWatcher) since the 2010 AASP, although we’d emailed back and forth a few times. It was great to see him again–and kinda funny, too. Not much had changed. He was rolling with his 11″ Celestron SCT and I had my XT10, just like last time. He was working on the Herschel II list and I was chasing Herschel 400 objects, just like last time. He’s closer to finishing his list, though, with only 25 or so objects left. Meanwhile I’ve just barely passed the 150 mark on the Herschel 400.

Darrell was already set up when we rolled in, and he invited us to set up to the south of his camp. Next to him was Jimmy Ray (just visible here between Darrell and David), who quickly hit it off with our crew. Darrell and Jimmy also shared their experience with us, which was a real boon, especially for Terry as he was still learning the ropes of his first GoTo scope.

Oh, about that GoTo scope. Up until now Terry has been working almost exclusively with tabletop Dobsonian reflectors. His first scope on getting back into astronomy in the past couple of years was an Orion Funscope, and his most-used scope is his SkyScanner 100 (see his review here). With the SkyScanner 100 and more recently a StarBlast 4.5, he has logged over 400 deep-sky objects, mostly galaxies. To put this into perspective, in five years of stargazing I have observed perhaps 350 deep-sky objects, mostly with a 10″ scope. So it’s quite an achievement, and one I hope I can convince Terry to write up as a guest post.

Anyway, my point is that going from small reflectors with no electronics to a big GoTo refractor is quite a change of pace. I asked Terry how it came about and he pointed to two major factors. First, the scope is a heck of a deal and he was curious about it. Second, and more importantly, after logging 400 DSOs by starhopping with small reflectors, he felt he had earned a break. I couldn’t agree more.

A few low clouds skirted the western and northern horizon around sunset, but they didn’t last, and the skies were cloud-free all night long. Transparency was good but not incredible. Jimmy said he could see the Gegenschein and pointed it out to Darrell and me, but neither of us was fully convinced. I’m not saying Jimmy didn’t see the Gegenschein, but I didn’t see anything I felt comfortable calling the Gegenschein. That could be inexperience on my part, and it could be imperfect vision, too. London regularly sees things in the sky that I just can’t make out. But it was also at least partly imperfect transparency.

(Now, I should qualify that by pointing out that the skies here in Claremont are essentially never as clear as the sky was at the AASP Saturday night. The transparency was only imperfect by the standards of the remote Arizona desert, where on the clearest nights it seems that there is no atmosphere whatsoever between you and the stars.)

The western sky was striped with delicate crepuscular rays after sunset (also just like last time).

One of my major goals for the night was finding and sketching comet 168P/Hergenrother, a dim periodic comet that unexpectedly brightened by a factor of 100 recently. It’s a tough catch from town–earlier this week I caught it from my driveway with the XT10, but only by waiting until it was high in the sky, knowing exactly where to look, and using averted vision. But under dark desert skies it’s dead easy, and shows a bright nucleus and wide tail even at low magnification. Comet Hergenrother is also moving at a decent clip–as the sketch shows, it moves visibly in the space of an hour.

I found the comet by sweeping northeastern Pegasus at low power, and sketched the field without taking the time to figure out exactly where I was. I thought I could work that out later, using Stellarium, and I was right. The right part of the above image is a screenshot from Stellarium, inverted and annotated in GIMP, to show the field of the comet. Hergenrother is still visible–check Heavens Above or google ‘comet Hergenrother chart’ for finder charts. Update: the best Hergenrother charts I have found so far are at Skyhound and AstroBob. The Skyhound chart covers more days, but the AstroBob chart goes deeper, and those dim little stars are clutch if you’re trying to find the comet under less-than-perfect skies. The Heavens Above charts are great but AFAICT they only show the position of the comet right now, so there is no provision for printing out a chart for this evening (and the comet will have moved in the meantime).

I chased the comet, I traded views with my fellow stargazers–including London, who found the Pleiades by himself with his AstroScan–and I hunted down a bunch of new Herschel objects. But my favorite views of the night were the unexpected ones.

First were the meteors. Holy smokes did I see a ton of them. I lost count around three dozen. One of the best came when Terry and London and I were walking David to his car–a brilliant meteor shot across the western sky and left a glowing trail that slowly faded. I almost missed the best meteor of the night, though. Around 1:30 in the morning I was looking down to check my charts when I saw bright light flashing in my peripheral vision. I looked up in time to see a fireball shooting straight down toward the northern horizon. It was so bright it cast shadows on the ground–something I had read about but never seen before. Update: David pointed out via email that the Orionid meteor shower peaks this weekend, and the meteors we saw last weekend were probably advance scouts from that swarm.

From midnight to 1:00 AM I took a little siesta. I reclined in the lounge chair with my 10×50 binos and split my time between dozing, scanning with the binos, and just looking up in wonder. The Milky Way shone from one horizon to the other like an arch supporting the dome of the heavens. But ironically it was the “dome of the heavens” I was trying to escape.

Shattering the Bowl of the Sky

I haven’t talk much with others about this, so I don’t know how common it is, but for me one of the hardest things about space is perceiving it as space. It is very, very easy to look up and see the sky as a dome set on top of one’s little patch of the Earth like a bell jar. It is much harder, for me at least, to keep in mind that it is three-dimensional, that the stars are not points stuck to the dome or to a celestial sphere but free-floating lights–no, impossibly distant suns–hanging unsupported in…nothing. In space, or in spacetime, which is harder to think about but amounts to the same thing.

One thing that I find helps me in trying to escape the tyranny of the spherical sky is to imagine that I am looking not up, but out, or even down. It works best if I lie down with my feet pointing south, and imagine that I am hanging off the side of the Earth like a picture on a wall. I used to do this in the front yard of my parents’ house, under radically dark rural Oklahoma skies, and to enhance the illusion I would dig my fingers into the dirt to keep from sliding off. When I tried it Saturday night I managed a mental 180: for a few minutes I fooled myself into thinking that I was hanging facedown, with the whole Earth above me like a great balloon tied to my back, staring down, down, down. Down forever into a great cosmic gulf in which the stars and clusters and galaxies were distributed at different depths, unevenly, like coral reef fish seen by someone snorkling at the surface. I wanted to let go, cut the balloon string, and fall into those distant deeps.

Eventually I came back down–or was it back up?–went back to the telescope, and got back to work. But the aftereffects of my perceptual voyage into deep space–really deep, fall-into deep–lasted like a slight electrical charge, a pleasant tingling in the brain.

The next time you’re outside under dark skies, try it and see where you go.

Morning panorama from the east end of the airstrip–click to enlarge

I pushed through to about 4:30 and then crawled in the back of the Mazda for a few hours’ rack. By about 8:30 it was too bright and hot to sleep anymore so I got up, got some badly-needed caffeine on board, and went about the day’s business. Which on the morning after a stargazing run with London means a hike.

A nice lineup of TeleVue refractors. From left to right, I think they are a TV-101, TV-85, TV-76, and TV-60. With mounts, this is probably $10,000 worth of equipment. Photo by Terry Nakazono.

On our way through camp we got to peer at other peoples’ scopes, in the manner of nosy neighbors. This lineup of TeleVue refractors was certainly droolworthy.

Of the many cool scopes we saw, my favorite was this homemade motorized binocular chair. The twin 6″ reflecting telescopes feed light to the eyepieces. The scopes can raise and lower as the observer raises and lowers his head, and the whole chair turns and reclines at the observer’s command thanks to a hand-held control paddle. Given my love of binocular astronomy, something like this might be my ultimate observing setup.

We didn’t have as much time for our hike as we did in 2010. Then we walked about five miles all told, over about three and a half hours. This time we had about an hour and a half, but we still managed to cover a lot of ground and see lots of cool stuff.

We used saguaro cacti as waypoints. This one seemed to be telling me something…

Back from a successful “bone hike”. Photo by Terry Nakazono.

At the 2010 ASP London was about a week shy of his 6th birthday. When we started out on that hike, he announced that it was going to be a “bone hike”. I didn’t have the heart to tell him that you can’t just decide to walk out into the desert and have any guarantee of finding bones. I figured we’d get what we’d get, and I’d break the tough news later if it became necessary. As luck would have it, it wasn’t–one of our first finds, just a few hundred yards from camp, was a big fragment of a cow tibia.

This time London knew going out that we’d probably get skunked, and it certainly looked like we would for most of the hike. But on our way back, within a stone’s throw of the closest RV, we started seeing the clean bright white of sun-bleached bone. We picked up a shoulder blade and parts of three vertebrae, perhaps from the same cow that lent us its tibia two years ago. We left behind a couple of ribs and another shattered vertebra for the next people to pass that way hunting for bones–possibly our future selves, if nothing turns up sooner on our next AASP morning-after bone hike.

I’ll end this post like I ended the last AASP observing report, with a photo of Darrell and London and myself, standing on a dusty abandoned airstrip in the exact middle of nowhere–a seemingly unremarkable spot that has become one of my favorite places on Earth. I’m already looking forward to my next Arizona star party. I hope I don’t have to wait two years to get back.


NGC 6645–the cosmic maw

August 19, 2012

I was out hunting Herchels last night and observed the open cluster NGC 6645 for the first time. From my notebook:

Fairly large open cluster. Not sparse, loads of stars, but all are about equally dim–none really jump out. Has an unusual dark spot in the middle like a mouth or the entrance to a cave. That plus five radiating chains of stars make it look like a howling monster.

This didn’t occur to me until today, but I finally realized which monster it put me in mind of–the Beholder from D&D. This sketch gives a sense of its appearance, although it does vary a bit with aperture–that artist saw “a pretty faint unresolved gray haze with about 30 dim stars visible” whereas the 10-inch resolved it completely, with mini-clusters around the central hole and long chains of stars radiating away like nerve endings from a cartoon neuron.

Anyway, this open cluster is well-placed in the early evening, it’s not hard to find, and it has a lot of character. Well worth tracking down. You can even generate a custom finder chart for it using the interactive star chart at, which I just learned about.

What does it look like to you?


Observing report: All-nighter on Mount Baldy

July 15, 2012

Whew! Last night rocked. Terry Nakazono was out from LA, and we had been planning for about two weeks to spend the night observing up on Mount Baldy. We had made a shorter, half-night run up the mountain back in June, Terry to chase faint galaxies with his SkyScanner and me to log a few Herschel 400 objects with the XT10. Last night was basically the same plan, but on steroids–the moon was rising later, and neither of us had anywhere to be today. My wife and son were both out of town, she on work and he on a sleepover, so I was released on my own recognizance.

We got up there about 8:45 and met fellow PVAA member Craig Matthews setting up his 8″ Dob. Former PVAA president Ron Hoekwater joined us a little later on.

Terry was rolling with his SkyScanner again, and aiming for galaxies in Ursa Major and Bootes. I decided to leave the XT10 at home and take the Apex 127 Mak instead. I’ve had that scope for about a year, but before last night I had not really tried it out under dark skies. It did go to the Salton Sea in February, but we were mostly clouded out that night. Five inches is a lot of aperture under dark skies, and I was anxious to see what the Mak could do. Mount Baldy is not stupid-dark like Afton Canyon or western Arizona, but it’s not bad at all. The Milky Way was prominent and showed a fair amount of detail, especially after midnight when a strong marine layer at lower altitudes effectively halved the light pollution to the south (Inland Empire) and southwest (Los Angeles). On light pollution maps Baldy shows as being in the Orange zone, Bortle Class 5, but between the altitude and the marine layer it is sometimes effectively Green (Bortle 4). Last night was such a night.

I also took along the Celestron Travel Scope 70, which I had otherwise only used for quick peeks from my driveway. I’ve been meaning to blog about that scope. Right now you can get the scope, finder, two eyepieces, a tripod, and a backpack carrying case from Amazon for about $70 shipped. The finder is a travesty–an all-plastic “5×20” unit that is in fact stopped down to 10mm right behind the objective. I stripped the so-called optics out of mine and use it as a naked-eye sight tube, in which role it performs admirably, and a heck of a lot better than it ever did as a magnifying finder. The tripod is a joke, the sort of thing that gives other flimsy tripods a bad name. It struggles to hold a point-and-shoot digital camera steady, let alone a telescope, so I donated it to a museum. But the eyepieces are serviceable, the carry bag is fine, and the telescope itself is okay–more on this in the next post–so for $70 it is a screaming deal. As with the Apex 127, I was anxious to see what it could do under dark skies.

It was not yet fully dark when we arrived so I spent some time jawing with Craig. It was cloudless and clear where we were, but we could tell it was raining in the Mojave Desert, because the northeastern sky flickered with distant lightning. And we knew it was far off because we never heard even a hint of thunder. The lightning was not reflecting off clouds but off of the sky itself. It was as if the sky was on the fritz, like a bad florescent bulb. It was a profoundly weird and unearthly effect.

I started my observing run by putting the Apex 127 on Saturn. In addition to observing with “new” scopes, I was also rolling with genuinely new eyepieces. Explore Scientific has been having a CUH-RAY-ZEE sale on their well-reviewed 68, 82, and 100-degree eyepieces, so I sold some unused gear and bought a few: the 24mm ES68, which delivers the widest possible true field in a 1.25″ eyepiece, and the 14mm and 8.8mm ES82s. The Apex 127 is my longest focal length scope at 1540mm, so those eyepieces yielded 64x (24mm), 110x (14mm), and 175x (8.8mm). I also have a 6mm Orion Expanse that gives 257x–that is my default high-mag eyepiece in any scope. The ES eyepieces had just arrived in the mail last week so last night was my first time to try  them out.

Anyway, the seeing was limiting, with the view shaky at 175x and downright ugly at 257x, but Saturn was crisp and jewel-like at 110x and I could see four moons even at 64x. I haven’t checked the charts to see for sure which ones they were, but Titan certainly, and Dione, Rhea, and Tethys probably. I have seen up to five moons of Saturn at once before, but that requires steadier skies than we had last night.

After Saturn I hit a few favorite Messiers, including the globs M13, M5, and M4, all of which were impressively resolved for a 5″ scope. My favorite view of the evening through the Apex 127 was of the galaxies M81/M82 in the same field at 64x, with tantalizing hints of detail visible in both.

Then I got to work, finding and logging Herschel 400 objects. I was chasing mostly open clusters in Cygnus and Cassiopeia. I logged NGCs 6866, 7062, 7086, 7128, 7008 (a planetary nebula) and 7790. I also tried for open clusters NGC 7044 in Cygnus and 136 in Cassiopeia, but could not locate anything I felt comfortable calling a definitive open cluster at the charted locations amid the rich Milky Way starfields. This was also an issue with several of the Cygnus clusters I did log—at high magnification they tended to disappear into the surrounding star chains and asterisms.

Getting skunked is no fun, and by that time I’d been working on H400s for about two hours. For a change of pace, I switched over to the Travel Scope 70 and started plinking at Messiers. With a 32mm Plossl eyepiece I got 12.5x magnification and a stunning 4-degree true field–more like a finder on steroids than a telescope. I started with the Double Cluster as soon as I saw it was over the horizon, then hit M31, but didn’t immediately see its satellite galaxies. Then it was on to the “steam” rising from the teapot of Sagittarius: M8, M20, M22, M24, M25, M23, M18, M17, M16—these last three all nicely framed in the same field—M26, and M11 up in Scutum. Then back to the “bottom” of Scorpio and Sagittarius to catch M6 (M7 had already set behind a hill to the south—bummer), M69, M70, and M54, then all across the sky for M51, M101, M102, M13, M92, M15, back to Andromeda for a nice view of M31, M32, and M110 all prominent in the same field, M52, M103, M33, M76, and M34. I’d seen all these things before, but for most of them this was the lowest magnification I had seen them at, given that my binocular observations of them had mostly been with 15x70s. One of my favorite views of the night was M103 in Cassiopeia with NGCs 654, 663, and 659 in an arc below in the same field.

A little after 3:00 AM it was time for another goal: tracking down the outer giants. I had looked up the finder charts for Uranus and Neptune on Sky & Telescope’s website and logged their positions in my atlas. I found Neptune first, in Aquarius, using the Apex 127. Neptune was a very blue spark, and required 257x to appear non-stellar. Uranus, farther east in Pisces, was obviously non-stellar even at 64x. I also ran up to 257x on it, but the most pleasing view was at 175x. I had seen both planets before, but never as well, nor spent as much time on them as I did last night. Very strange to see giant Neptune as a tiny point of light in the mind-boggling darkness and immensity of space.

After observing planets I went back to the TS70 to continue the Messier survey. Logged M57, M56, M27, M45—absolutely stunning in the center of the field at low power—M72, M73, M2, M30, M75, M71—and old adversary from my early days with the XT6, but dead easy at low mag under dark skies—and M77. I tried for the faint face-on spiral galaxy M74 and suspected something there but couldn’t be sure. For a few these objects, including M72 and M77, I had to go up in magnification to pull them out of the skyglow or make sure they were not stars, using the 25mm (16x) and 17mm (23.5x) Plossls. I tried the 24mm ES68 but it was too heavy for the long cantilever from the mid-tube dovetail to the extended focuser tube of the TS70.

The last big show of the night was an upside-down kite shape rising in the east, with Jupiter at the top, Venus at the bottom, the thin crescent moon on the left, and Aldebaran on the right. I looked at the planets with the Apex 127 at 64x—the near-horizon seeing was bad but Venus’s crescent shape was well-defined, and Jupiter showed a couple of cloud bands and of course the four Galilean moons. Update: Pictures of this conjunction are posted here.

And that was it. The sky was rapidly getting brighter in the east, so we didn’t need artificial light to pack up. We pulled out at 5:25, went to Norm’s diner for breakfast, and I dropped Terry off at his hotel and went home for some badly-needed rack.

My final tally for the night was 8 new H400s, including NGCs 654 and 659; 44 Messiers, 42 of which I saw in the TS70; and 5 planets, including all four gas giants and Venus. Favorite observations were the flashing sky from over-the-horizon lightning, M81 and M82 in the same field in the Apex 127, M31 and both satellite galaxies in TS70, my best-yet views of Neptune and Uranus, and the dawn conjunction of planets, moon, and stars. Between dusk and dawn I observed five of the seven planets visible in a 5-inch scope, missing only Mars and Mercury (both were achievable, it turns out, I just didn’t try for them). It was a heck of a good night.

How did all the equipment perform? Stay tuned for the next post!


Observing report: All-Arizona Star Party 2010

November 7, 2010

A few months ago I found a good deal on a used 12″ reflector. The guy selling the scope, Darrell Spencer, lives in Phoenix, and offered to drive part of the way for the handoff. We met at a diner on I-10 in Arizona and had a great conversation over breakfast. In particular, we talked about our favorite dark spots and the chances of meeting up to observe sometime. We parted fast friends, and both started scheming about how to meet up under dark skies.

With the new moon, pleasant temperatures, and clear skies over most of the southwest, this weekend was a big one for star parties. Through various clubs and friends I heard of at least four here in SoCal, and I’m sure I would have had a great time at any of them. But the one I ended up attending, thanks to an invite from Darrell, was the All-Arizona Star Party, out in the desert about 50 miles east of the California border. Darrell didn’t know I was going to take this picture until about half a second before I clicked the shutter, hence the expression.

The AASP was going on both Friday and Saturday nights, but I could only afford to do one night, and the forecasts called for Friday night to be a little bit better. I picked up London after kindergarten and we hit the road.


We rolled in about half an hour before sunset, and found a spot next to Darrell. Steve Coe and AJ Crayon were set up on either side, so I was hanging out with some truly legendary observers. They also turned out to be darned nice guys. Here’s AJ’s truss dob cooling down on the right, with my XT10 on the right.

There had been a few wisps of cloud in the sky when we pulled in, but as the sun set they evaporated, and by the time the first stars came out, the sky was clear except for a little fuzz over the Phoenix light dome, low on the eastern horizon. The last of the sunlight striped the western sky with some beautiful crepuscular rays.

I spent the couple of hours just surfing around the sky, hitting some seasonal favorites. London looked at a few things but spent most of his time watching for satellites and shooting stars. At 7:20 most people on the observing field stepped away from their scopes to watch the western horizon. There was supposed to be a rocket launch from Vandenberg, a Delta II putting up an Earth-observation satellite (here’s the story from the Vandenberg site). At 7:21 we saw a bright spark flying low over the western horizon. That’s what 100,000 lbs of thrust looks like from 300 miles away. It was the first time I’d ever seen a real rocket in flight. London was even more thrilled, if that’s possible. He also spotted a couple of satellites and shooting stars, so he got everything on his list. I had a list of my own to deal with.

Into the Deeps

London was dead asleep by 8:00 and I settled in for a nice long observing run. I was tracking down the last few objects I needed for the AL Caldwell Club, and starting on my next big observing project, the Herschel 400. A few of my favorite objects from the evening:

NGC 5982 and 5985 (H400): A nice pair of galaxies. At 92x, 5982 is a small bright round glow, like a miniature M32; 5985 is an elongate, dimmer smudge of light. Excellent pairing.

NGC 1023 (H400): Big, bright, beautiful edge-on spiral galaxy, with clearly delineated core and bits of detail in averted vision. A minor showpiece!

NGC 2261, Hubble’s Variable Nebula (Caldwell 46): Very cool V-shaped spray of bright nebulosity. Edges of ‘V’ are very sharp and crisp, and the middle of the fan fades out evenly. Not like anything else I’ve seen in the sky.

NGC 2362 (H400, Caldwell 64): Open cluster. At 37x, almost perfectly triangular scattering of about 20 equally bright stars around a much brighter central star. One of the prettiest open clusters I’ve seen–better than many Messiers.

NGC 2024 (H400): Big, detailed bright nebula adjacent to Alnitak in Orion. At 57x, looks like a ghostly version of its photographic appearance. Extremely cool.

I was using my XT10 for almost all of my observations. I also had 15×70 binoculars along and they came in handy for working out a couple of tough star-hops and for observing IC 342 (Caldwell 5)–this galaxy is so big and diffuse that it was difficult to make out in the telescope, even at low power, but it was a cinch in the binoculars.

But my favorite observation of the night, and one of my favorite observations of all time, was made with naked eyes. About 12:40 I leaned back from the eyepiece and just stared up. Right at the zenith, between the Pleiades and the constellation Aries, was a very large, faint, and diffuse patch of light. I called Darrell over to ask him if it was what I thought it was. He thought so, but wasn’t entirely sure, so we asked Steve Coe, and he confirmed it. We were looking at the gegenschein.

Gegenschein, Shine On

The solar system is full of dust. Very little if any of this dust is left over from the protoplanetary disk that gave rise to the planets; that should have spiraled into the sun long ago.  Most of what’s out there now is thought to have been “processed”: incorporated into planetesimals early in the formation of the solar system, and redistributed by meteor impacts, asteroid collisions, and the evaporation of comets. The planets do not revolve through empty space, but through a flat disk of dust that encircles the sun like a phonograph record.

Under very dark skies, this dust is visible, for the same reason that the planets are visible: reflected sunlight. The brighter manifestation of the reflected dust-light is the zodiacal light, which stands up like a pillar from the horizon. It’s called “zodiacal” because the dust, like the planets, orbits in the ecliptic plane, which is projected against the background stars that make up the constellations of the zodiac.

The gegenschein is another, dimmer reflection of sunlight off the interplanetary dust cloud. As the German term–“counter shine”–implies, the gegenschein is observed directly opposite the sun. Friday night the sun set a little after 6:00 PM, and Saturday morning it rose a little after 6:00 AM, so right after midnight the sun was directly behind us (as it always is midway between sunset and sunrise, wherever you happen to be). That meant that the dust grains right overhead were in full phase, the same way that the moon is full when it is opposite the sun in the sky.  Darrell, Steve, and I saw this full-phase portion of the sun’s dust cloud as that glowing patch of light directly overhead. I had read about the gegenschein, but I had never seen it before. It is so faint that even the smallest amount of moonlight, haze, or light pollution will make it invisible. Seeing the gegenschein is a sign that you’ve been under some of the darkest, clearest skies on Earth.

(There is one further step: some observers have seen the zodiacal light from both horizons extending up to the zenith, making a complete band of light crossing the entire sky, with the gegenschein in the center like a diamond on a ring. Those people have seen the entire disk of dust visible from Earth at that time. This is on my life list of things I most want to see.)

I pushed on to a little after 2:00 AM. I ended the night with 6 Caldwell objects, which pushed my total to 74, past the 70 required for the AL  club. I also observed 27 objects for the Herschel 400, and re-observed at least 21 Messier objects over the course of the evening. The Great Nebula in Orion looked better than I have ever seen it–the nebulosity just kept going on forever and ever, and the patch around the Trapezium was incredibly detailed. I saw a lot of amazing stuff Friday night, but the gegenschein easily takes the cake.


London and I have a deal on these camping trips: I observe all evening, and he takes me on a hike in the morning. He told me that yesterday’s hike would be a “bone hike”, and we’d be looking for bones, spiders, and scorpions in the desert.

There was a range of low hills about two miles to the west of camp. London was adamant that we were going to climb them. And so we did. The secondary summit of the hill on the left in this picture is the one we climbed. The entire hill was comprised of shattered rock and covered with cacti, and the farther we climbed, the worse it got, so we settled on the lower peak.

The round trip took three hours and with all the winding around we did we probably walked five miles. I would not have thought my little man would have the stamina, but he was a real trooper. He had even packed up the water we’d need for the hike in his backpack. Not bad for a five-year-old!

We saw plenty of cool stuff along the way: saguaro cacti, free-range cattle, a jackrabbit, ants of every imaginable size and shape, and lizards that zipped from bush to bush almost too quickly to see. London did find a spider–a baby tarantula that froze when we walked up–and a bone, the broken, sun-bleached tibia of a cow. So the walk was a success all around.

Fittingly, the Tuscon contingent at the star party had a bunch of specialized solar scopes set up on the sun. When London and I got back to camp, we went down to check out their setup. They invited us have a look. There was a bright active region and little spike-like prominences standing out from the edge of the sun like quills on a hedgehog. I say “little” prominences but the biggest were probably about as tall as the Earth is wide. It doesn’t pay to get too blase about anything up there, especially our closest star.

Until Next Time…

It’s funny, when I’m back in civilization I spent too much time mooning over gear (New Year’s resolution notwithstanding). But when I’m out under dark skies, gear is the last thing on my mind. The telescope just gets out of the way and I am alone with the stars. It’s easy to slip into a productive rhythm–checking the charts for the next object, working out the star-hop, trying different magnifications to see which will make a given object show up best, taking some time to really look for details, recording my observations…sitting back to look around and just exult in the majesty of the night sky. The time flies by, always faster than it should. Strange, how thoroughly I can lose myself finding things in the sky.

This weekend might have been the end of the fall star party season.
California’s rainy season is upon us.  There will be clear nights and plenty of good stuff to see for the next few months, but it will be catch as catch can. Still, I’ve had a great run this fall, and I can’t wait to see what’s next.