Archive for the ‘Hacks’ Category

h1

From sub-aperture mask to replacement dust cap

February 23, 2017

aperture-mask-2-4-length-comparison

Here’s something dumb. The Bresser AR102S Comet Edition is optimized for two things: widefield, low-power scanning, and portability. At 20″ for the OTA it’s just within the bounds of airline carry-on-ability, but you can unscrew the dewshield and shave off another 4″, at which point the options for storage and transport expand wildly.

BUT the stock dust cap for the objective is dome-shaped, for no good or obvious reason, which means it sticks out about a full centimeter longer than necessary. When you’re thinking about flying with a scope, that is one centimeter more stupidity than you should have to put up with.

There’s another problem with the stock dust cap: when the scope gets cold, it gets loose and falls out easily. Nothing unique to this scope about that – I’ve had to shim the majority of my scopes’ dust caps for the same problem, including the C80ED and XT10. One cheap package of sticky-back green felt has kept me going since 2010. I think I’ve used almost a third of it.

Now, I already have a nice 60mm sub-aperture mask for this scope (construction details here). If I could plug the central hole securely, I’d have a replacement dust cap that would be shorter, would get tighter rather than looser if it shrunk in the cold, and would serve double-duty as both a dust cap and a sub-aperture mask. The problem was finding a plug the right size, with a good lip on it to keep dust out, that would grab the edges of the mask hole securely.

aperture-mask-2-1-tootsie-roll-can

And it’s the dollar store to the rescue again, with this container of Tootsie Rolls that is intended to double as a coin bank. The hard plastic lid snaps down into the cardboard tube very securely, and the plug bit is just a shade over 60mm in diameter.

aperture-mask-2-2-external

I used the Dremel and some sandpaper to enlarge the hole in the sub-aperture mask ever so slightly, and voila. There’s a small lip that runs around the top edge, and even a little recess in which to hook a finger and pull out the plug.

aperture-mask-2-3-internal

Here you can see the ridges on the plug. By sanding in short increments, I was able to fine-tune the hole diameter until the plug snapped in very securely, without stressing either piece. I need to put some tape or a little epoxy or something over the perforated slot, which is intended to be punched out so the candy container can become a coin bank. Or cut out the center and replace it with another, smaller plug, so I’d have a dust cap and two aperture masks in one package…

aperture-mask-2-5-dust-cap-replacement

Boom. Now the scope is a centimeter shorter for travel, and I don’t have to keep the sub-aperture mask in my eyepiece case.

What I really want is for someone with even rudimentary 3D modeling skills to create a series of nested aperture masks, like Russian dolls, in 10 or 20mm increments, which could be 3D printed on demand in whatever combinations people needed. Most of them could be standard sizes, with only the outermost adapter for each telescope model needing to be custom. Then you could order the adapter for your scope and whatever set of nested masks you wanted, or maybe all of them to simplify, so your 100mm scope could also be an 80mm, a 60mm, a 40mm, and even a 20mm (the “Galileo model”) if you liked, just by taking out the relevant bits from the dust cap. Sure, it would be gross overkill for most people, but for those of us who like playing “what if” (“what if my C80ED was a C40ED?”) it would be a godsend. And with 3D printing no-one would be stuck with a bunch of useless stock when the idea inevitably bombed.

Anyway, if someone would to that, it would save me the trouble of building my own “Mask-ryoshka” dust cap out of junk from the dollar store. But if I’m being totally honest, avoiding building my own stuff out of junk from the dollar store was never the point of the exercise, was it?*

* With apologies to Adam Savage.
h1

Why and how to make a sub-aperture mask for a refractor

February 11, 2017

60mm-aperture-mask-6-comet-edition-close-up

Here’s the Bresser Messier AR102S Comet Edition with a homemade aperture mask. I just converted the scope from a 102mm f/4.5 to a 60mm f/7.7.

“WAT!? You took a refractor, the most aperture-challenged of the three basic telescope designs, and made it even smaller?”

Yup. For several reasons.

The first and most obvious is to control chromatic aberration (CA), also known as false color. Despite the name ‘achromat’, which literally means ‘no color’, doublet refractors without extra-low dispersion (ED) glass do show some false color, because their lenses do not bring all of the colors of light to the same focus point (they’re still a LOT better than scopes with a singlet objective lens, like those used by Galileo). For dim objects like galaxies, nebulae, and most field stars, the effect is not noticeable, even in large and optically fast scopes like the AR102S Comet Edition (nickname needed). But bright objects like the moon, planets, and first magnitude stars will be surrounded by purplish halos, and may have yellowish margins. In effect, the purple and yellow-orange parts of the spectrum are forming out-of-focus images that are superimposed on the main in-focus image.

The problem is that CA gets bad fast as refractors get bigger. There are a couple of standards that are commonly used to describe the focal ratio necessary to minimize CA to acceptable levels, the Conrady standard and the Sidgwick standard. By the Conrady standard, the focal ratio must be 5 times the aperture in inches; by the less stringent Sidgwick standard, 3 times the aperture in inches is good enough. Note that the standards describe focal ratios, not focal lengths, so they go up fast with increasing aperture. Here are some apertures, focal ratios, and focal lengths required to meet the Sidgwick standard:

  • 50mm (2″) : f/6 : 300mm
  • 76mm (3″) : f/9 : 684mm
  • 102mm (4″) : f/12 : 1224mm
  • 127mm (5″) : f/15 : 1905mm
  • 152mm (6″) : f/18 : 2736mm

This, along with mounting considerations, explains why reflectors and catadioptric scopes are progressively more common past 4″ in aperture. A 6″, f/8 Newtonian will be free of false color (as are all reflectors) and has such a gently converging light cone that it is easy to collimate and to focus – it’s easy for such scopes to achieve ‘planet-killer’ status if the mirror is good. A 6″, f/8 achromat will be a beast to mount and it will show lurid false color on bright objects.

But people still make, buy, and use such scopes! Why? Horses for courses: big, fast achromats can be superb deep-sky scopes, where chromatic aberration is typically not a problem. With the fixed sizes of standard eyepieces, achieving wide true fields requires short focal lengths (not just short focal ratios), and bright images require aperture, which drives the development of large but optically fast scopes like the AR102S Comet Edition. At f/4.5, it is well into ghastly CA territory on bright targets. The other night I stayed up late to catch Jupiter, and in the AR102S the planet wouldn’t even come to a clean focus. It was just a bright ball of light inside a sea of purple. I switched over to London’s 60mm f/11 Meade refractor and Jupiter snapped into a sharp and essentially color-free focus. There was a moon emerging from behind the limb of planet, already one moon-diameter out into black space, that was completely invisible in the CA-smudged view of the AR102S.

I’m okay with that – as I noted in a previous post, observing bright solar system targets with the AR102S is deliberate misuse of the scope. When I want good planetary views, I have a 5″ Mak and a 10″ Dob that can both be pushed to 500x (assuming the atmosphere is steady enough). But their max fields of view are pathetic compared to the AR102S – about 1.1 degrees for the Mak, and a shade over 2 degrees for the Dob, versus 3.6 degrees for the refractor, which is enough to take in all of Orion’s sword at once, with space left over on either side.

Still, I’m not going to take all of my scopes out with me every time I go observing, and chances are good that at some point I’ll want to look at something bright even if my main goal for the evening was low-power sweeping with the AR102S. Under those circumstances, it’s easier to have an aperture mask shoved in my eyepiece case than to pack a second scope. Hence this project and this post.

But I’m getting ahead of myself. There are other reasons to stop down a scope besides reducing CA:

  • To reduce glare from bright objects. Mostly applies to the moon when it’s full or very gibbous.
  • To give a more aesthetically pleasing image when the seeing is bad. Opinions differ on this point. Some folks prefer to look through a larger aperture despite the increased susceptibility to bad seeing, on the grounds that in the moments when the atmosphere does settle down a bit, you’ll see more detail. I suppose it depends on whether one is in exploration mode or aesthetic observation mode.
  • To make it easier to focus. F/4.5 is a steep light cone, and it’s easy to overshoot the point of best focus. Stopping down the scope makes a shallower light cone, so it’s easier to watch the image transition from out of focus, to near focus, to in focus. I’m going to test this method of finding best focus on some close double stars.

I had done some calculations in advance to figure out what sizes of aperture masks I’d want to try out. Given that the AR102S has a fixed focal length of 459mm, here are the focal ratios at full aperture and at 10mm decrements:

  • 102mm gives 459/102 = f/4.5
  • 90mm gives 459/90 = f/5.1
  • 80mm gives 459/80 = f/5.7
  • 70mm gives 459/70 = f/6.5
  • 60mm gives 459/60 = f/7.7
  • 50mm gives 459/50 = f/9.2
  • 40mm gives 459/40 = f/11.5

3-inch-sub-aperture-mask

I didn’t want to trade away too much resolving power, so I tested the scope on the moon using cardboard masks of 76mm and 60mm, made from the light cardboard spacers from a box of wet cat food. The 76mm is shown above. Perhaps unsurprisingly, at this aperture and focal ratio (f/6) the view was still unappealingly soft. But 60mm looked good, with minimal CA. This makes sense – the working focal ratio of f/7.7 is a healthy step beyond the f/7.2 that the Sidgwick standard suggests for a 60mm aperture. Going any smaller would be trading away valuable resolution, without significantly improving the image.

60mm-aperture-mask-1-gallon-jar

The light cardboard aperture masks were fast and easy to make, but they weren’t very sturdy. To make a more permanent mask, I needed plastic, heavier cardboard, or foam-core board. So I unscrewed the dewshield from the scope and walked down to the dollar store, where I looked for food packages and storage containers that might fit. Finally on the last aisle I found this 1-gallon plastic jar. The lid slip-fit over the dewshield with just a bit of extra room, which I knew I could shim out with some sticky-back felt.

60mm-aperture-mask-2-marking

I wanted to make sure the lid would fit before I did the hard work of cutting, so I put the felt on first. This was very familiar – it seems like every other scope I get has a loose dust cover that has to be shimmed to fit correctly. I’ve been slowly chipping away at the same package of sticky-back felt since 2010. I didn’t have a compass handy, so I used a small paper ruler to make a ring of marks around concentric 60mm circle inside the lid. Then found a lid to a jar of vitamins that was exactly 60mm in diameter and used that to trace the circle neatly.

60mm-aperture-mask-3-completed-mask

I was going to cut out the aperture using hobby knife, but the plastic was too tough. So I moved up to a box knife, and then a linoleum knife. Then I said heck with it and got the Dremel. The hole I cut wasn’t perfectly circular and had rough edges to boot, so I wrapped some sandpaper around a pill bottle to make a tool for rounding out the aperture.

60mm-aperture-mask-4-comet-edition-before

Here’s the scope before…

60mm-aperture-mask-5-comet-edition-after

…and after.

Even with the aperture mask, the AR102S is not a champion scope on solar system targets. The C80ED blows it away, which makes sense – it has a 33% resolution advantage over the stopped-down AR102S, and frankly just better glass. But at least the view now is clean and not appallingly degraded. A dramatic way to see the difference is to get a good tight focus on the moon with the mask on, then quickly take it off without removing one’s eye from the eyepiece, and watch the view get a lot brighter and a lot softer at the same time.

I have a few more things I want to do. The 60mm aperture mask fits over the end of the scope so securely that it could work as a dust cover, if only I can find or make something to plug the central hole. Also, I think I am going to play with making aperture masks in other sizes, just to see what happens.

And finally, I have another 4″ scope that will be fun to make an aperture mask for. But that will be a subject for another post.
skyscanner-aperture-mask-test-fit-jar-lid

h1

Hacking the SkyScanner 100: six easy pieces

February 7, 2017

skyscanner-100-before-hacking

Remember this thing? It’s a lovely little scope, but I got tired of crouching over it. And it’s made out of tractable materials – rolled steel and particle board, mostly – and costs next to nothing as these things go ($100 as of this writing), so it was basically crying out for customization. I made six fixes – two on the base, two on the outside of the tube, and two on the inside of the tube. They’re all cheap, fast, and easy, hence the title of the post (with apologies to Richard Feynman!).

skyscanner-hacks-1-eyepiece-rack-and-handle

My first two mods were to the base. (1) I had a leftover eyepiece rack, which I screwed to the base in the only place and at the only angle that it would fit. It works great. My very first scope, an Orion XT6, came with an eyepiece rack like this (which has since been dropped from the base model XT6), as did my XT10, and I’ve always found them to be very convenient. It took me a long time to realize that an eyepiece rack didn’t have to be horizontal to work, especially if the eyepieces are always capped so they can’t fall out.

(2) The second mod is the wire handle on the top of the base, which I scavenged from an earthquake stabilization kit for furniture. It’s just a small woven steel wire with an eyelet at either end which is screwed into the particle board that makes up the base. When I put it on, I thought I’d cut a piece of aquarium tube to slide over it as a cushion. I still might do that at some point, but so far I haven’t needed to. The whole scope and mount only weighs 6 lbs, maybe 7 with a full eyepiece rack, and I’m never carrying the scope that far. Basically from the garage to the driveway, or from the car to a picnic table. So the wire handle has not had the opportunity to get uncomfortable yet. This was the simplest mod but may be the one that has made the most difference in terms of overall convenience. Orion should just build ’em this way, even if it bumped up the price by five bucks.

The piece of tape on the tube is covering the holes intended for mounting the dot finder. I never used it, and now the holes are in an inconvenient place. I’ll come up with a more permanent and better-looking solution than the tape, but at least it keeps dust out of the tube for now.

skyscanner-hacks-2-focuser-position-and-laser-trough

This photo shows the two mods to the outside of the tube. (3) Originally the focuser pointed straight up, with the focus knobs on the opposite side of the base arm. I wanted the focuser to face up at a comfortable angle, so I wouldn’t have to lean so far over the scope while using it. And I wanted the knobs on the same side as the base arm, so the eyepiece rack would face the user. Achieving both of those goals meant moving the scope’s dovetail bar about 135 degrees around the tube. To do that, I had to drill new holes in the tube. I used a paper wrap to get the new holes lined up with the old ones and with each other, made pilot dents using a thumbtack, then drilled them out with a cordless electric drill. It’s not a good idea to have metal filings flying around precision optics, so I removed both mirrors before drilling the holes. It’s fun to take a telescope all the way apart and put it back together, especially if it works better after you’ve done so. Everyone should try it.

(4) Once I had the dovetail moved over to the new holes, I had a couple of perfectly good holes in the tube in a convenient place, and at a convenient angle from the dovetail and the focuser. So I built a laser trough to go there. It’s an idea I got from Ken Crowder, a former PVAA member. Back in 2010 on one of my first trips to the Salton Sea, Ken had his 8-inch SCT set up with a video camera for taking integrated shots of deep sky objects. To help get on target, he had wooden bracket pretty much like the one you see above, into which he would lay his laser pointer. Lots of companies make special rings for adapting handheld laser pointers into telescope finders. But like me, Ken wanted to be able to do other stuff with his laser at a moment’s notice, like trace out constellations for newcomers, or point out especially nice things in the sky without moving his telescope. The wooden bracket lets you drop in the laser and get on target quickly, and then lift it out and use it for other things.

To fine-tune the aim, Ken would shim his with little scraps of wood and paper, and I intend to do the same if necessary. But with the SkyScanner’s 400mm focal length, a 32mm Plossl yields 12.5x and 4-degree true field of view, and even a 25mm gives 16x and a 3-degree field, so even without shimming the laser is usually good enough.

skyscanner-hacks-3-laser-trough-close-up

Here’s a close-up of the laser trough. I built it out of wood scraps and glue. The hardware store didn’t have hex-cap metric screws in the size I needed so I got machine screws and washers. I used a spade bit to cut little indentations for the hardware. The two square stringers on the bottom are to help keep the whole rig aligned with the long axis of the tube.

skyscanner-hacks-4-primary-center-spot-and-secondary-bolts

Finally, the two inside-the-tube mods. (5) I center-spotted the primary to aid in collimation. The best thing to use for this is a notebook reinforcing ring. I have a whole package of those somewhere, but I can’t find it. But I did find a package of the little round stickers of the kind you use to make price tags at garage sales, and made it into a ring with a handheld hole punch. It works great. I have doubts about its longevity, but if and when it falls off, I’ll just make another. It seriously takes less than five minutes. Most mass-produced reflectors these days ship with their primary mirrors already center-spotted, and it really helps with collimation.

(6) As explained in the last post (link), I swapped the stock Allen bolts for secondary collimation with standard hex-cap bolts that I can turn by hand and lightly tighten with a small pair of pliers.

skyscanner-hacks-5-all-ready-to-go

So how does the reborn SkyScanner work? Pretty darned well! It was already an extremely convenient and easy-to-use scope, and now it’s even moreso.

I’m not done hacking on it. As shipped, the primary mirror can’t be collimated. I read on CN about lengthening the bolt holes in the OTA that the mirror cell is screwed into, so that the mirror cell can be tilted to achieve primary collimation. I tried this and didn’t like the results. It’s very hard for me to get the mirror cell mounting bolts tightened down enough to keep the mirror cell from shifting. Especially because it’s natural to grab the back of the scope to help aim it, and in doing so I almost always shift the mirror cell relative to the OTA and subtly throw off collimation. Or not subtly – at f/4, every last arc-second of collimation matters. So I’m going to build a fully-collimatable mirror cell.

And I’m going to figure out a better way to cover those holes in the tube for the finder. And flock the inside of the tube, and make a long dewshield to keep stray light from hitting the secondary and the focuser drawtube. And probably do some other stuff I haven’t thought of yet. I’m basically going to treat this scope as a testbed for every hack I can think of. Should keep me busy for a while.

h1

Upgrading secondary collimation bolts on a reflector

February 5, 2017

dscn1615

Here’s a fast, cheap, and easy hack that I do to every reflector that passes through my hands. I hate messing around with hex wrenches while collimating my reflectors, so I replace the Allen bolts with standard hex-cap bolts that can be turned by hand and lightly tightened with a socket wrench or pliers.

I’ve done the mod to all three of the StarBlast 4.5s that the PVAA has placed with the Claremont Public Library – which I am responsible for servicing every couple of months – as well as to my XT10, my SkyScanner 100, London’s XT4.5, and the 5″ f/5 SkyWatcher Newt I had a few years ago. You’ll notice that so far, all of the scopes I’ve done this to have been Synta-made and Orion or SkyWatcher branded. All of the smaller ones have taken identical hardware, but I did the XT10 so long ago I don’t remember – I think it took longer and possibly larger-diameter bolts, but I could be talking crazy.

If this is something you’re interested in doing, you need to take two measurements, make a run to the hardware store, and do about five minutes of work when you get back home. Or you can get a set of Bob’s Knobs, which are much nicer and designed for no-tool use. But making your own with hex-cap bolts costs less than five bucks and gives passable results, and doesn’t stop you from picking up Bob’s Knobs later if you like.

The first thing you want to know, that you can only find out from your assembled spider/secondary mirror mount, is the length of bolt that you’ll need. The secondary holder has two parts, the hub that the spider attaches to, and the 45-degree-angled mirror holder that is usually attached to the back of the secondary mirror itself with double-sided tape. The collimation bolts engage with threads in the hub, and bear against the flat back surface of the mirror holder. The Allen bolts that the scopes ship with are much shorter than the distance from the mirror holder to the front of the hub. So collimation requires sticking a hex wrench down the hole blindly and fumbling a bit to get it seated in the socket (at least for me – if that doesn’t bother you, this post will probably not be of much use).

secondary-mirror-diagram

If you’re going to replace those little shorty Allen bolts with regular bolts, you need to know the distance from the mirror holder to the front of the hub – it’s the dimension between the dotted lines in this diagram, labeled “min. length for bolts”. Your replacement bolts need to have shafts at least this long, or their caps are going to run into the hub before they engage with the mirror holder. It doesn’t really matter how much longer they are, as long as it’s not ridiculous – you don’t want them sticking so far out of the front of the scope that they’ll catch on things or scatter light into the tube.

The second thing you need to know is the type of collimation bolt your scope has – its diameter and thread pitch. If you don’t know that, and you probably won’t the first time out, just back one (and only one!) of your Allen bolts all the way out, and take it with you to the hardware store.

metric-bolt-gauge

At the hardware store you’ll find a bolt gauge like this one. Actually you’ll probably find two, one for English hardware and one for metric. If you have a scope made in China, it probably uses metric hardware, so start there.

testing-original-bolt

Here’s a close-up of me testing one of the collimation bolts from the SkyScanner in the metric bolt gauge. As you can see, it fit the 4mm socket.

replacement-bolt-bag

I already knew from measuring the scope’s secondary that I needed bolts longer than 20mm. And here’s my part: a 4mm x 25mm (diameter x length) bolt, part #81494 at Orchard Supply and Hardware. I bought six – three for my SkyScanner 100, and three for London’s XT4.5, which I hadn’t done yet.

testing-replacement-bolt

My motto is “trust but verify”, especially before buying hardware. If unbagging a part to test it in the store makes you queasy, you can just push the end of one bolt through the bag, enough to try it on the bolt gauge. This won’t destroy the packaging should you need to put it back – buy it or leave it, you can poke the bolt back into the package and only leave a tiny hole (in this case, 4mm!).

original-allen-bolts

Here are the old bolts ready to go into the bag, which has all of the original Allen bolts from half a dozen reflectors now. I don’t know why I save them. I ‘m kind of an astro-hoarder. If anyone out there wants these, let me know and I’ll send them to you gratis.

Anyway, so far, so good. You get home, back out the Allen bolts, and replace them with the hex-cap bolts. Now, this is important: for your sanity, replace the bolts one at a time. If you screw all of the original Allen bolts out before putting in any of the replacements, your secondary is going to be flopping around uselessly. It may well rotate in place and end up not even facing the focuser drawtube. Take it from an idiot who has done this! But if you replace the bolts one at a time and get all of the replacements finger-tight, the mirror will maintain its radial orientation and may even stay in pretty good collimation through the procedure, although of course you’ll want to recheck and touch up the collimation when you’re finished.

There are loads of good sources on Newtonian collimation online so I’m not going to reinvent that particular wheel. I’ll just add a couple of tips that have made my life a lot easier. The first is to try to balance the push and pull on the three collimation bolts. In other words, if you want to screw in one bolt, back off another one first. If you only ever collimate by screwing in, you’re going to either run out of travel, jack up your mirror holder, or force it farther down the tube, depending on what the deal is with the mounting bolt (some are spring-loaded, some aren’t). When I sit down to collimate the secondary, I quickly go around to each bolt and turn it both ways, backing out first and then screwing in, to get a sense for what each bolt does.

The second tip is specific to these replacement hex-cap bolts on the Orion/Synta scopes that I own and service. Once I get the secondary collimation where I want it by tightening the bolts with my fingers, I go back around and give each one a small additional twist, maybe a sixth of a turn, with the little pliers I keep in my eyepiece box (see here). If I do this evenly to all three bolts, it doesn’t affect the collimation, and the extra bit of tightness helps the scope stay in collimation longer. That might no be needed or even helpful depending on how the mounting bolt engages the mirror holder. Play around with it and see what works for you.

Replacing these bolts was just one of half a dozen hacks I made to the SkyScanner 100. The rest will be covered in another post very soon. Until then, clear skies!

h1

Marking up sky atlases

February 4, 2017

I’m a book lover. Any space I’m in for long will have books on every available surface and piles of extras on the floor. Because of this love of books, for a long time I wouldn’t mark them up. This hands-off reverence extended to my sky atlases. But eventually I realized that sky atlases are tools, not heirloom pieces, and anything that makes them more useful when I’m observing is justified.

marked-up-psa-chart

Here’s a representative page from my working copy of the Pocket Sky Atlas (I also have a second copy, autographed by John Dobson, that actually is an heirloom piece now). The circles and polygons flag objects from various Astronomical League observing projects. Triangles are double and multiple stars, rectangles are Herschel 400 objects, big circles are for the Binocular Deep Sky objects, and an open letter C designates Caldwell objects. I also drew in the position of Almach, which is just off the edge of this chart, wrote in the number for the multiple star 57 Persei, and wrote down the magnitudes of Algol and some of the useful reference stars, including Almach. Arrows in the margins are left over from my Caldwell tour.

I’ve finished all of those projects except the Herschel 400. You’ll see that some of the little rectangles have a diagonal slash across one corner – that’s how I flag which ones I’ve already observed. I’ve actually seen all of the H400s on this chart, I just got lazy about marking them off in the atlas. But I did write ‘CLEAR’ in the corner of the page so I know not to waste my time looking for unobserved H400s here. Other pages have the numbers of the H400s I still need written in the margins, for quick sorting and bookkeeping at the eyepiece.

These marks are very helpful while I am working on a project, because I have an instant visual reminder of what’s available to see in any given stretch of sky. And once I’m done with a particular project, the marks still point me to a lot of ‘best in class’ objects that I might otherwise overlook or forget.

Oh, I also sketch in the positions of comets from time to time, with the dates of observation.

This method has worked so well for me that I have thought about picking up extra copies of the PSA (for $13!) just so I could mark them up with objects from other observing projects. I’ve done that with a couple of my other atlases. My copy of the Cambridge Double Star Atlas has all of the AL Binocular Double Star targets marked, and I use my Jumbo PSA (which is ridiculously useful) to keep track of targets from the last several years of Sky & Telescope’s Binocular Highlight column, to help me avoid repeats. Of course I have other lists for all of these things, both physical and digital, but it’s nice to have an easy reminder when I am out observing or doing desk research.

Do you mark up your atlases? If so, what system do you use? Let me know in the comments.

h1

How to build a stand for a Dobsonian telescope

November 19, 2014

DIY dob stand 1

London got an Orion XT4.5 for his birthday last week. We’ve had it out a couple of times and it is an awesome scope. It strongly reminds me of my old XT6–the XT4.5 is a bit smaller, but probably not as much as you’d think from looking at photos of it. It’s solid, moves well, and the optics are great.

It is, however, too short. Even for London, and he’s just a bit over 4 feet tall. Clearly, we needed to get the scope up off the ground. The first night out, just to test potential setups, I put the scope up on an old plastic milk crate. This is the heaviest, sturdiest milk crate I’ve ever seen, and the scope still rocked back and forth on it. We needed a 3-legged solution.

Now, Orion makes a dedicated Dob stand that is really nice. It has grooves instead of divots to accommodate Dobs of many sizes. It also costs about $145, which I think is stark raving lunacy for 4 pieces of wood that any idiot could screw together.

DIY dob stand 2

The Dob stand I am about to show you will also accommodate any size of Dob, as long as you build it that way. It also costs next to nothing. For me it was precisely nothing since I used old crap I found in the garage: wood from a long-defunct futon (the same futon that gave some of its physical body to my old DIY Dob base), some metal shelf supports from a project that never got off the ground, screws from my “spare screw” box, and the modest tools I already owned, namely a saw and a handheld drill.

Step zero was to have London sit in one of the folding chairs that we use when we go camping or up Mount Baldy to stargaze, then set up the XT4.5 in front of him on the floor, pointing straight up, and measure the vertical distance between the eyepiece and his eye. As always when building anything to do with a Dob, it’s better to skew low–it’s always easier to bend down an extra inch to get to the the eyepiece at the horizon than it is to lift your butt an extra inch when the scope is pointed straight up. My rough target height for the stand was about 6 inches.

Conceptually this thing is dead simple: it’s just a ‘T’ of wood, reinforced on either side with the shelf supports. I figured out the dimensions by putting the XT4.5 down on a big sheet of paper and tracing the feet, and then laying the wood down on the paper sheet and tracing the cuts that I would need to make.

DIY dob stand - top close-up

Once I had the basic T-shape together, I set the XT4.5 on it and traced the feet again, directly onto the wood, then used a spade bit to drill out some depressions. The spade bit has a triangular tooth at the center that cuts a deeper hole, and that became the pilot hole for the screw that holds each leg on. So the legs are precisely below the feet of the Dob for maximum strength and stability.

DIY dob stand - foot close-up

In addition to the big screws that run down their long axes, the legs are reinforced with small angle brackets. These are probably overkill, but I wanted to build this thing once and then not worry about it for the next decade or two. In retrospect, angling the two “back” legs toward the center might have been smarter than making them parallel to the cross-bar. But like I said, this thing is probably over-built as it is.

DIY dob stand 3

The last step was to paint it with a couple of coats of black primer, which I also had lying around in the garage. The black paint definitely classes it up a bit. From a few feet away in the dark, you might even mistake it for something that had shipped with the scope.

How does it work? Wonderfully. I took care when I used the spade bit to cut the depressions so that the feet of the XT4.5 just fit inside their outer edges. Once the XT4.5 is settled in place, it will not slide or rock at all; it practically snaps in. You’d have to knock it over to get the ground board to move. You can grab the tube and swing it all over the sky and the ground board and stand stay put. And there’s no detectable vibration. The legs are each 5 1/4″ long and the T is 7/8″ thick, so the height is acceptably close to my “roughly six inches” goal. More importantly, London is able to observe comfortably while seated, whether he’s looking at Polaris low in the northern sky or the Andromeda galaxy dead overhead (and it was the other night, too, darn near straight up).

DIY dob stand 4

There is one final addition I want to make before I call it done: I want to sink a cap nut into the bottom of each leg. That way I can screw bolts of various lengths into the legs to make smaller feet. The stand as built does not rock on any surface on which I have tried it (driveway concrete, grass, and gravel so far), but the bottoms of the legs are long enough that it potentially could. Using bolts as feet would make the contact patches smaller and reduce the opportunity for rocking. Plus, that way the stand can grow with London: as he gets taller, we can swap out the foot-bolts for progressively taller pieces. I’d use cap nuts instead of T-nuts so the support bolts couldn’t punch through and damage the wood.* With a bigger Dob, I might put on casters. In fact, the swiftness and ease with which this thing came together–I did essentially everything but paint it in one afternoon–has got me thinking about building a rolling unit for the XT10. If that ever happens, you’ll read about it here.

* It just occurred to me as I was finishing this post that if it wouldn’t have upset London to start hacking on his brand-new scope, I could have sunk cap nuts into the ground board of the XT4.5 itself, and put long threaded bolts straight into them to make feet. If I ever get an XT4.5 of my own, I’ll probably do exactly that.**

** It further occurred to me after the post went up that the ground board already has threaded holes for the rubber feet, which have embedded bolts and screw in from the bottom. So in fact if I had thought it through I probably could have skipped the whole Dob stand entirely and just screwed 6-inch-long bolts into the ground board; if the included rubber feet are loafers, those long bolts would be stiletto heels. I haven’t actually tested that setup, mind you, but it seems like it ought to work.

If you don’t have a bunch of crap lying around in your garage, you can probably still build something like this for under $20, maybe less than half that if you can scrounge the wood. If you don’t have metal shelf supports and don’t want to spring for them, you could cut pieces of wood to reinforce each side of the ‘T’ diagonally. Painting is optional, the thing works just as well in its unpainted ugly state. If your woodworking skills are like mine–nearly nonexistent–you can also use the unpainted unit to make your carpenter friends cry. Have fun!

h1

Guest post: David DeLano’s ultimate Galileoscope quest, Part 5 – SCT focuser notes

March 15, 2014

Well, our long journey is at an end (for now!). No new pictures, just some notes on how long the various bits are, should you want to add an SCT focuser to your GS (or just about anything else). For previous posts in this series, go here. Thanks, David!

IMG_1242

Yes, that is a 2-inch focuser on David’s Galileoscope. Why do you ask?

SCT Focuser – 90mm
Low Profile 2″ – 1.25″ adapter – 10mm
Tele Vue Low Profile SCT adapter – 38mm
SCT M-M – 10mm

For F/11 objective, need something close to 75mm + 50mm = 125mm
Above parts are 90mm + 10mm + 38mm + 10mm = 138mm
Need to cut down 23mm, though 20mm might be enough.

Could use a zero clearance 2″ – 1.25″ adapter or negative adapter (ScopeStuff) (negative won’t work, since the diag won’t slide into it).

From Agena

SCT Focuser – 90mm
Low Profile 2″ – 1.25″ adapter – 1mm
TV Low Profile SCT adapter – 40mm (probably a better figure than OPT)
SCT M-M – 1mm

Total – 90mm + 1mm + 40mm + 1mm = 132mm (5-7mm too much)

However……since not using the SV helical, there might be gain on the diag EP end.

h1

Guest post: David DeLano’s ultimate Galileoscope quest, Part 4 – The GS F11 SCT GS to end all GS

March 9, 2014

The moment you’ve all been waiting for–I would be shocked if anyone, anywhere, ever, has put this much time, thought, experimentation, and additional gear into their GS. But having used it in the field, I can tell you that David’s monster GS is both a potent observing tool and a real pleasure to use. To see how David got from the stock GS to this, see the previous posts in this series.

GS F11 SCT

There is actually one other way to solve the Galileoscope focal length issue. When the Learning Encounters site (http://www.leosciencelab.com/ [not linked here because there is nowhere to go–MW]) was functional, they carried a diagonal kit, with which you could construct your own diagonal to go with your Gallileoscope. Part of the kit was a new, F11, objective. With this longer focal length objective, a diagonal will work in the GS without shortening it. This is the ideal solution, but it is likely very difficult to find one at this point. I had modified my daughter’s GS with this kit, and it worked perfectly well with a Stellarvue diagonal w/helical focuser. I also had a spare kit, originally bought for my son, but he lost interest. So, I decided to use it for myself.

Somewhere along the way in this project I also bought a used SCT focuser off of Cloudy Nights. The SCT focuser ended up to be a lot larger than I had thought it would be. It was far to long to use the original F10 objective, but since I had the F11 objective I decided to give it a try.

I had a 2″ adapter with SCT threads from my previous experimenting. I had to buy a M-M ring to mate it to the focuser, and the first one I tried didn’t quite work. I found a second one that had a lower outer profile, and it actually nestles inside the focuser barrel so that the 2″ adapter and focuser are mated with no additional length. I tested this out, and it was almost short enough to focus, but not quite. The SCT focuser has a 2″ EP holder on it, and I used the shortest 2″ to 1.25″ adapter I could find, but was still in need of a couple mm in length. I also found that the tube was butting up against the inside of the 2″ barrel, so I shortened that a bit (and at this point it barely touches, which is the best length to have), but I was still not satisfied. I found a prism diagonal with a lower profile EP holder, but was still not quite satisfied. I found a 2″ to 1.25″ adapter at ScopeStuff that was almost zero clearance. It would be zero clearance with an EP but since I was attaching a diagonal, it added 1-2mm. ScopeStuff, however, removed the lip on the adapter for a small fee, and this gave me the focal length I desired – I can focus with my glasses on or off! The adapter attaches to the diagonal barrel with a couple of inset hex screws, which works perfectly.

I added a more than necessary red dot finder that I had bought cheap somewhere along the way. It looks like overkill, but actually helps with the balance. This scope is really too much for a finder, though I did use it while observing at the Salton Sea with Matt. It will likely end up as my lightest grab and go as the mount it is attached to in the picture rides on a photo tripod, and both the scope and tripod fit into a bag together. All that is needed is an EP or two. As a finder, I had been permanently using a 32mm Plossl, but as a viewing scope I’d likely take along a couple of other EPs to use.

Modded GS compared to GS F11 SCT

Side by side with Matt’s modded GS you can see that it is about 50mm longer, which is what the F11 objective gives you. The SCT focuser makes it look even more massive, but it still is a GS at heart.

And also to give some comparison, here are, top to bottom, the SCT set, Matt’s set, and the ABS part, so you can see how much focal length each adds.

attachment comparison

I think I’ve covered everything. If you are still reading this, I hope you enjoyed the ride. If you have a Galileoscope kit, I hope that I have inspired you to turn it into a usable scope or finder. If you have questions, please post them to the blog comments, and I’ll try to clarify.

h1

Guest post: David DeLano’s ultimate Galileoscope quest, Part 3 – The Difficult Solutions

March 2, 2014

The third installment in David DeLano’s GS-hack-a-thon guest post series. For the rest of the series, click here.

To make the Galileoscope really useful you need to have a better way to focus it, and need to be able to use a diagonal with it, for comfort of viewing. These are difficult problems to solve, but hopefully the information given here will resolve these issues in a relatively easy fashion. I’ll give a little bit of the process I went through to come to a usable solution, to help others come up with their own solutions. At the end, I’ll give what should be an off-the-shelf solution, though I have not used it myself.

First, the focus issue – the only reasonable solution is to find a helical focuser, though in the next post I’ll show another possible solution. When I first started looking for a helical focuser, they were difficult to find, at least at a reasonable price. I eventually found a diagonal with a helical focuser at Stellarvue, but only by sending them an email and asking if they had any available standalone, as they packaged it with one of their finders. Now, however, I see that they have them on their web site, so hopefully they will remain available for anyone wanting to mod their GS.

You might ask, why not just use the diagonal with the helical focuser with a Barlow lens attached, and not have to mod anything. Well, I tried this. It was a bit baffling at first, and I could not get the focus to really do anything. Then it occurred to me…by lengthening the distance between the Barlow lens and the EP lens, all I was doing was changing the magnification due to the Barlow lens. I would still need to use the push-pull focus.

StellarVue diagonal

Stellarvue diagonal, from the Stellarvue website.

I should also note that I have received two different helical focusers from Stellarvue. The original one “worked”. The newer ones have more travel, but add a bit more to the focal length, and won’t work for all cases. What this really means is, you need to find a focal length solution that takes into account this additional length.

Now on to the real mod work. The focal length needs to be shortened. I wish I could tell you how much the length needs to be shortened, but measuring the light path is not as easy as it sounds, especially through a diagonal. I should also note that this diagonal has a prism, rather than a mirror, making the measurement even more complicated. The prism does give a correct image, though, which is what you really want in a finder.

So…the tube needs to be cut. This is the most difficult part of the mod, but it isn’t impossible to do. I happen to also have woodworking as a hobby, and have a nice crosscut saw, but any saw that will cut ABS plastic and give you a straight, flat cut will work. The cut will leave a bit of a rough edge, but it can be sanded or filed smooth(er). This edge will not really be seen, so don’t sweat it much. However, the truer the cut and edge you create, the easier it will be to collimate the scope, or to at least assure that it’s close to a parallel light path. Note that I’m avoiding saying this is easy to do. I run into instructions that state something is easy or simple all the time, only to find out that it’s next to impossible to do with the tools I have. But it is a reasonable, not impossible, task.

cutoff point

I came across the place to cut the tube by experimenting. In fact, I have one tube that ended up cut too short, but I think I can give enough instructions so that others will avoid this issue. The tube itself actually gives you the spot to start, so you don’t need to measure anything. There is a baffle inside the tube at the rear. Cutting just one side or the other of this baffle is the spot to start.

Once the tube is cut at this point, the focal length is very close to where it needs to be, in order to bring a diagonal into focus. The cut will look like this, to top half being cut and the bottom half not yet modified.

Note that while doing all this work, remove the objective and keep it protected. Don’t add it back into the tube until you are ready to test the focus.

cutoff illustration

A can of compressed air comes in handy here. You will likely have ABS chips all over the place, and they tend to cling to the tube due to static electricity. Blow everything off as cleanly as possible. If you don’t, you’ll end up with whatever is left clinging to the back side of the objective. I should also note that I use the compressed air to clean dust off the objectives. Yeah, I know you aren’t supposed to do that, but it actually works a lot better than trying to clean the objective with a cloth, and let’s face it – this objective cost all of about $15. I have yet to find any scratches on mine.

Now, you have a shorter tube, but nothing to hold the tail end together, other than the O-rings, and the resulting hole is really too large for the diagonal. You could probably modify the focus tube to somehow hold the diagonal, but I could not come up with a decent solution that I was satisfied with. So I set out to find something that would fit over the newly made end of the scope.

This brings me to the GS3 mod. In searching through the ABS plumbing parts, and believe me, I bought and tried a LOT of different parts, I came across a part that I think is a 2″ to 1.5″ reducer. Note that plumbing parts measure things in several different manners, and like threads, nothing appears consistent. In any case, the part will friction fit over the end of a pipe, and thus the scope, and the other end has a threaded cap and compression ring that just happens to have in ID of 1.25″. The cap will actually tighten around the diagonal barrel quite nicely.

ABS plumbing part mod

The story could end here. I used a GS with this mod for quite some time, but there are a few issues with it, and that is what set me out to find something better. First, the focal length just barely works. I could just get it to focus, most of the time, while wearing my glasses, but not without them. Matt didn’t have any issue, though he was wearing glasses also. I probably could have cut just a bit more off the tube to give more in-focus, but only if the plumbing part would actually push on further and wasn’t at it’s limit. The tube is sloped at this point, so the more you cut off, the larger the OD. It was an iffy situation that would have rendered the scope unusable if the cut didn’t work. Also, over time, the force fit became loose and I was always having to force the end back on, sometimes in the middle of a viewing session. And, one thing that I had not considered was that the scope was poorly collimated. I verified this with a refractor collimator and I wasn’t getting near the views that I should have been getting.

2-inch adapter mod

Off to experimenting again. The breaking point was when I realized that a 2″ EP holder could be fitted over the end. This also fit more deeply onto the tube, making the cut off point more forgiving.

Now I just had to figure out what to fit onto the 2″ EP holder and make it short enough to bring the scope to focus. I started out with a 2″ extender that just happened to have a barrel that screwed off and had a 48mm thread. This is the same thread as a 2″ filter. Note that a 2″ to 1.25″ adapter usually has a filter thread on the bottom, and thus the two could be mated.

2-inch to 1-25-inch adapters

Alas, this solution was just a bit too long. However, your mileage may vary, so feel free to experiment with parts you have on hand before buying any new parts. Actually, with the lowest profile adapter that I could find, I could barely get the scope to focus, but with no leeway, so I kept looking for another solution.

In my searching, I found three different ways to mate a 2″ holder to a 1.25″ holder. There are parts with a 48mm thread, an SCT thread, and a T-thread. Some of these solutions need a Male-Male or Female-Female adapter, depending on what threads the parts have. Experiment with any of these that you might have on hand.

Note that if you can put the 2″ part completely on the scope tube, you can either mark it with a pencil, or just turn it around the tube a few times. You may not be able to get the 2″ part on all the way, in which case you’ll need to estimate how much more of the tube to remove. But, as long as you leave enough room for the 2″ part to grip, you can now cut anywhere between the baffle point and the 2″ mark. I also found that the closer you can come to the inside limit of the 2″ tube, the easier it is to keep the part square as you fasten it down. Having a 2″ part with a compression ring and two or more screws also helps.

There is actually a fourth solution, and it’s the one I ended up using for Matt’s scope. A 1.25″ to 2″ adapter will work if you have the right parts. This is an adapter that allows you to use a 2″ EP in a 1.25″ focuser, not the normal 2″ to 1.25″ adapter. My original solution was to thread a spare EP holder onto the scope end of a diagonal. But, I just happened to have this part spare after converting a prism diagonal to use a helical focuser (at one point I was able to obtain a few of the helical focus EP holders as parts, not mounted on a diagonal). You are at the mercy of the threads matching if you go this route. That was the first version. I ended up buying a prism diagonal from ScopeStuff, though, to get a shorter EP holder. This diagonal happened to also take a helical focuser (threads matched) and the scope end had a barrel that was held on via a 1.25″ filter thread. So, on Matt’s final mod, the 1.25″ to 2″ adapter was screwed directly onto the diagonal body, giving the absolute maximum amount of in-focus (minimum focal length). In fact, the focal point, at least with glass on, is about in the middle of the helical focuser, which is ideal. The 2″ mated with a 1.25″ adapter is shown beside it, so that you can see the difference, around 10mm, in the focal length.

GS Matt version

After looking at the measurements of all the parts I came across I think I have a solution that should be fairly cut and dried (note I didn’t say simple or easy). It ends up that the T-thread adapters that Agena Astro covers are the shortest I could find. I think you will still need a M-M or F-F adapter to connect them, but this only adds a mm or two. This along with the Stellarvue diagonal w/helical focuser should put you in business.

update kit

And to answer Matt’s question…..by the time you get a decent way to focus and add a RACI diagonal to an otherwise inexpensive scope, you might as well buy a RACI finder.

h1

Observing Report: Night of the Refractors redux

November 20, 2013
IMG_1261

From left to right: my TravelScope 70, my C102, David’s C102. When I took this picture, we hadn’t put the finders on the big scopes yet, or gotten my stand-alone GalileoScope set up yet.

This one is a little late: David DeLano and I spent the night of Sunday, November 3, observing at the Salton Sea. This is the belated observing report.

We met up at the visitor center at the headquarters campground. We rendezvoused there a little after 3:00 in the afternoon because we had some things to do before sunset, which because of the time change was coming at 4:50. The visitor center gift shop has a little astronomy section and both of us picked up a copy of the Sky Atlas for Small Telescopes and Binoculars, by Billie and David Chandler–more on that atlas another time. David also picked up a nice plasticized version of the Chandler planisphere.

Chandler Sky Atlas

After that we drove down to my favorite spot at the Sea, which is the south end of the Mecca Beach campground. A couple at another site were loading up as we were pulling in, and the left a few minutes later. After that, we were the only humans at the campsite all night long, except for someone in the late evening who pulled in, turned around, and left, all without stopping.

Our first activity was dinner at a picnic table in the shade. We split the gear and groceries like so: David supplied firewood and snacks, and I brought dinner (Subway sandwiches) and cooked breakfast (pancakes).

IMG_1243

Even as we were eating, the second activity commenced: the exchange of hostages. As far as I can tell, David is a hot rod mechanic who happens to work on small refractors instead of cars; if that strikes you as hyperbole, just read on. Anyway, he’s way more adept at getting refractors to sing than I am, so I had brought him an unfinished Carton 60mm f/15 refractor and a couple of small objectives that I had rescued from otherwise unsalvageable garage sale scopes. To transfer into my care, David had brought a nice Celestron 2-inch star diagonal for my C102, and–most importantly–a GalileoScope that he had built and modded for me.

Galileo is Rocking Out in His Grave

The GalileoScope was created for the International Year of Astronomy in 2009, when it originally sold for $15. That was mostly down to economy of scale; now that sales have cooled, the price is up to about $50. It’s still a lot of telescope for that price. David’s GalileoScope mods have been featured here before.

The stock GalileoScope is a straight-through instrument with an f/10 objective and a push-pull focuser, which you aim by looking along some gunsight-style ridges on top of the OTA. My GS has had its tube chopped to accommodate a Stellarvue 90-degree diagonal with a helical focuser (the #D1026AF unit here, if you want one for yourself), and has a Daisy red-dot finder perched on the forward gunsight.

IMG_1242

Above, my nicely tricked-out GalileoScope. Bottom, David’s insanely modded version–possibly the most attention anyone has ever lavished on a cheap build-it-yourself 50mm refractor.

Lest you get too jealous of my pimped-out GalileoScope, let me describe David’s own GS. He got the aftermarket f/11 objective kit, which lengthens the light path enough to allow the use of a diagonal without chopping the tube. At the back end of the scope, there’s a 2″ Crayford focuser (yes, you read that right) with a 1.25″ adapter. His diagonal also has a helical focuser for fine-tuning; in fact, in use I forgot about the Crayford and used the helical focuser exclusively. At the front end, there’s some kind of fancy RDF, sold by Cabella’s for use by hunters, with the largest eye-lens I’ve ever seen apart from the “boxy” astro-only unit-power finders, the Telrad and the Rigel Quikfinder. A set of nice rings with Delrin-tipped screws completes the instrument, and allows David to mount it coaxially with his larger scopes as possibly the most awesome luxo-finder-slash-second-instrument that I’ve ever encountered (on a small scope; the 9.5-inch refractor mounted on the 12-inch Zeiss in the Griffith Observatory probably takes the cake for larger instruments).

David’s GS really must be seen to be believed. Once on the Dinosaur Mailing List, Mickey Mortimer wrote, “Looks like it’s time to over-technicalize this previously tame post.” I can’t think of David’s GS without those words going through my mind. I wouldn’t be surprised if it is the most extensive hack anyone has done on a GS. It is definitely the most badass.

I should mention that getting both of the GalileoScopes to work as well as they do involved a lot more than just throwing some nice parts on. It required a lot of work and thought and experimentation. Happily, David documented the process and will have a guest post about his adventures in GS-hacking in the not-too-distant future. So stay tuned for that.

IMG_1266

David’s GS mounted on his C102 as the luxury finder to end all luxury finders.

After dinner and the exchange of hostages, it was time to set up scopes. I was rolling with the C102/SV50 combo again. I also set up the TravelScope 70 just to have something different to plink around with. David set up his second tripod for my GS, and put his mod-tastic GS on his own C102, using a third tube ring to support the GS stalk and rings. This makes for an imposing setup. I studied it as intently as an American astronaut getting his first look under the hood of a Soyuz capsule. We used some antennas on a distant mountaintop to get everything aligned, and then almost immediately we were off and running.

Skyward!

Our first target, at 5:30, was Venus. There wasn’t much to see–basically a very bright half-circle–but checking in just feels like the right thing to do.

Next we turned to the Double Cluster and Stock 2 and spent a few enjoyable minutes tracing out the loops and chains of stars in our various instruments. Like last time, I could see the red stars in NGC 884, and if anything they were easier this time since I knew what to look for.

After that we turned south and did a big tour of the Sagittarius/Scutum area, eventually going north into Aquila and then west through Serpens to Ophiuchus. But I’m getting ahead of myself.

We started with the teapot asterism in Sagittarius, and let that guide us to M8, the Lagoon Nebula. Then we hopped up just a bit to M20 (the Trifid Nebula) and the open cluster M21. After that we took a break to hit M13 in Hercules before it sank down into the light dome over Palm Springs. We returned to Sagittarius with globs on the brain and took in M22, which I thought was a serious contender in the field of majestic globs. Then it was up to the M24 star cloud, where we got lost for a few minutes at the sight of literally thousands of stars in our eyes. Somewhere in Seeing in the Dark–and irritatingly I cannot find the passage right now–Timothy Ferris describes a swath of the sky, possibly M24, as a “wonderland of far-flung suns”. Whether he intended it for M24 or not, it’s an apt description.

At the risk of letting my current bout of refractoritis get the best of me, I must say, the view of M24 through the C102 was just breathtaking. Now, I have visited M24 before, many times. It is one of my favorite places in the sky. But I had not taken a good look at it through a decent-sized refractor under dark skies. The contrast was superb: against a jet-black background, the stars were so finely graded by brightness that I noticed rivers and shoals among them that I had never been aware of before, including a current of brighter stars running north-south and paralleling the Milky Way. Truly, this is the backbone of night.

But even in a palace, one can want for variety (or so I’ve heard), so we ventured onward. Past the open cluster M18 we came to the Swan Nebula, M17, very bright and clear and looking just like its namesake. Then farther up we found M16, the Eagle Nebula, its tendrils of glowing gas wrapped around a dense cluster of newborn stars. Then back to M24 to pick up the open clusters M25 and M23, which attend the majestic star cloud like obsequious courtiers. M25 is one of my favorites; it sits at the center of a curving arc of stars that David describes as a spiral, but that to me has always looked like a fishhook, with M25 as the bait.

After working through all of those objects with the scopes, we stopped for a binocular tour. I had along my Nikon Action 10x50s and David was rolling with his Nikon action 10x40s. I found that if I held David’s green laser pointer between two fingers of my right hand and the binoculars, I could aim the laser beam at the center of my field of view. We shared many sights over the course of the evening using this trick. For starters, we revisited all of the Sagittarius clusters and nebulae mentioned above, and picked up the little glob M28 as well.

DeLano 1 chart - wide

The asterism “DeLano 1” next to Mu Aquilae. It is much more obvious than this Stellarium view shows, and looks more like a bright open cluster.

Then we turned north to Scutum and Aquila. Our first stop was M11, the Wild Duck cluster. Then I took a break for bathroom and snacks, and David went crazy finding new things. When I got back to the scope, I had some catching up to do: the open clusters IC 4756 in Serpens, and NGC 6633 and IC  4665 in Ophiuchus. David had also discovered something pretty that was not listed on any of our charts: a small group of bright stars just north of Mu Aquilae. So far I have not found this listed anywhere as a named object; for the heck of it we called it DeLano 1.

DeLano 1 chart 2 - narrow

A closer view of DeLano 1.

Zoom Zoom Zoom

I see that I have not mentioned what I was using for eyepieces. Thanks to the 2″ diagonal I could use my 32mm Astro-Tech Titan, which gives a wider true field than any other eyepiece I own. In the C102 it gives a magnification of 31x and a 2.2-degree true field of view, which was great for framing almost everything we looked at (the Pleiades fit with a little room to spare, even). My only other 2″ or dual-barrel EPs are the 21mm and 13mm Orion Stratus EPs, which I used infrequently Sunday night. When I wanted more power, I put in the 1.25″ adapter and my new toy, the Celestron 8-24mm zoom eyepiece.

My only previous experience with a zoom EP was a Scopetronix 7-21mm, which was pretty stinky. Zoom EPs always have wider apparent fields of view at high magnification and narrower AFOV at low magnification. That is pretty much the opposite of ideal, but physics is physics, and the comparatively narrow apparent field is tolerable as long as it doesn’t get too narrow–below about 40 degrees you feel like you’re looking through a soda straw. Unfortunately, with the Scopetronix zoom, the AFOV started at 40 degrees (at high mag) and ended up somewhere below 30, at which point the image is so small you might as well be looking through the other end of the telescope.

Happily the Celestron 8-24mm zoom has a more generous AFOV. The stated range is 40-60 degrees, and that seems about right to me. What’s not so great? It’s not parfocal across its magnification range (I don’t know how many zoom eyepieces are), so you have to refocus as you change magnification. Also, it’s a little soft at high power. Not egregiously so, but my 8.8mm ES82 is not going to be losing any sleep. On the plus side, it’s decent, convenient, and at a current street price under $55, dirt cheap.

Incidentally, this is the danger of getting a couple of high-end eyepieces: they are so sharp and so clear that when you go back to merely average EPs, the differences are immediately noticeable. It makes you spoiled.

Lyra, Cygnus, Vulpecula, and Sagitta

After I got caught up in Ophiuchus, we turned north, first to Polaris and the “Engagement Ring” asterism, and then to the Lyra/Cygnus/Sagitta area.

Naturally our first stop was Epsilon Lyrae,  the “double double” star, which was cleanly split at 125x with 8-24mm zoom. So if you’re curious about that eyepiece, there’s a point in its favor.

After that we followed my usual J-shaped path through this  region: from the Ring Nebula, M57, on past the fair-to-middlin’ glob M56 to the brilliant, contrastingly-colored double star Albireo. Like a lot of double star observers, I like doubles when they’re not too widely split, and at 31x the 32mm Titan and C102 gave perhaps the best view of Albireo I’ve ever had in a scope. After Albireo, go straight south to find Collinder 399, better known as Brocchi’s Coathanger. Southwest of the Coathanger one comes to the pair of closely-spaced, equally-bright stars that mark the feather end of the constellation Sagitta, the arrow. Halfway along the arrow a zig-zag pattern of stars leads to the faint glob M71. Then proceed along the arrow to the third bright star up from the feathers and hang a right to find M27, the Dumbbell Nebula.

The Dumbbell does a neat trick as either one’s scope or one’s sky conditions improve. From a small scope, or a big one under city lights, it looks like a bow tie. As things get better, the ends of the bow tie sprout extensions to either side, so the nebula starts to look more like an apple core. Finally the area to either side of the apple core starts to fill with nebulosity, so the nebula ends up looking like a football with a bright band–the former bow tie/apple core wrapped around its “waist”.

10-04-2008_DumbellThe football form of the nebula is obvious in most astrophotos of M27. Here’s a nice example by Rogelio Bernal Andreo (DeepSkyColors.com) that shows the different aspects in different colors: white bow tie center, red apple core extensions, blue football wings. I have seen the football before in the XT10, but I had never seen it in a small scope before Sunday night. And, to be clear, the C102 did not show the entire football. But it did definitely show the wisps of nebulosity extending out on either side of the apple core. It’s probably  best to say that M27 was halfway between  the apple core and football forms. It was missing the crisp cut-off at the edge of the football, which the XT10 will show under sufficiently dark skies. But it was still way more than I expected. I am still learning what a 4-inch scope with high contrast can do under dark skies; the answer is, “an awful lot”.

The striking appearance of M27 can in part be chalked up to excellent transparency in the early evening. Another example is that both of us could clearly make out the North American Nebula, NGC 7000, in the binoculars. My best-ever views of the nebula have been with 15×70 bins out at Owl Canyon. I have caught glimpses of it in the 50mm glasses before, but never as good as it was Sunday night. David was getting it clearly in his 40mm bins, which is pretty amazing.

We did another binocular tour in this area, hitting all of the objects listed above as well as M29, M39, the heart-shaped asterism around the bright star Sadr in the heart of Cygnus, and the wide blue/orange binocular double Omicron Cygni. This was about 8:30 PM, four hours into our 9-hour run.

This is pretty much how we proceeded for the rest of the night: pick an area, figure out some of the best and brightest objects therein, and hop our way through them. David was working off the Evening Sky Map and suggesting objects from its lists, and I was working from the PSA and rediscovering some goodies I hadn’t seen in a while. Rather than give an exhaustive list of everything else we saw, I’ll just list some highlights:

NGC 253 and NGC 288 – NGC 253 is the Silver Coin Galaxy. It’s up there with Andromeda (M31), the Whirlpool (M51), the Sombrero (M104), and Bode’s Nebulae (M81 & M82) as one of the best galaxies for northern hemisphere observers. My first view of it was in binoculars from Big Bear Lake, and under those dark mountain skies it looked as good in the 15×70 bins as a lot of galaxies look through a telescope. Mottled details is visible in even small scopes under sufficiently dark skies. While you’re in the area, might as well drop down about one eyepiece field and pick up the globular cluster NGC 288.

NGC 7789 – Here’s one I’d seen before but forgotten about. This is a nice open cluster off the tip of Cassiopeia, sandwiched between two small groups of bright stars. There are a lot of open clusters in Cassiopeia–we did a third binocular tour that encompassed NGC 457, NGC 436, M103, NGC 663, NGC 659, NGC 654, and Cr 463–but NGC 7789 might just be the best, not only for its inherent charm but for the rich surroundings in which it is set.

M37, M36, M38 – This is the famous trio of open clusters in Auriga, which are among the most popular and  most visited objects in the winter sky. The one that impressed us the most Sunday night was M37, the lowest (east-most) one. It is a dense swarm of tiny stars, which David described as “crystals”, and which to me looked like the proverbial scattering of diamonds on black velvet.

M46, M47, M93 – These open clusters in Puppis are also popular winter objects, especially the close pair of M46 and M47. I suspected the planetary nebula NGC 2438 in M46, which I first spotted at the All-Arizona Star Party back in 2010. Since then, I always look for it, and when I do spot it, I wonder how I was able to go  for so long without seeing it.

M76 – This is the Little Dumbbell Nebula in Perseus, and one of just a handful of planetary nebulae in the Messier catalogue (the others are M27, M57, and M97). As its name implies,  the Little Dumbbell is the smallest and probably least impressive of the Messier planetaries, but I’ve always had a fondness for it. Although small, it has a high surface brightness so it’s not hard to spot if you know where to look, and it is not without its charms.

Planetary nebulae illustrate why the Messier catalogue is a two-edged sword. On one hand, the Messier catalogue does include some best-of-class objects in almost every category of DSO; on the other hand, there are numerous objects in other catalogues that outshine (sometimes literally) the less impressive Messiers. For galaxies, you have things like the Silver Coin and NGC 4565 in Coma Berenices; for open clusters, look no farther than the Double Cluster in Perseus and NGC 663 and NGC 7789 in Cassiopeia; for diffuse nebulae, see the Flame Nebula (NGC 2024), the Rosette (NGC 2237), and the Christmas Tree or Cone Nebula (NGC 2264).

But planetary nebulae get especially short shrift; a quick-and-dirty list of impressive non-Messier planetaries in northern skies includes the Cat’s Eye (NGC 6543), the Eskimo (NGC 2392), the Saturn (NGC 7009), the Ghost of Jupiter (NGC 3242), and the Blinking Planetary (NGC  6826). This is not because Messier had anything against planetaries but because his catalogue was discovered rather than assembled post-hoc, and discovery is always a haphazard process. Still, we are not discovering these things for the first time, and with their often high surface brightness and charming array of forms, planetary nebulae are great targets for beginning and city-bound observers.

By 2:00 AM we were winding down, and so were the skies. A cloud mass that had been hovering over Palm Springs started to send forth offspring, and the haze near the horizon was getting worse. A bright star in Leo that I just couldn’t place turned out to be Mars. We had one last look at the Double Cluster and called it a night.

It was one of the most fruitful observing runs I’ve ever had. By my count, we looked at:

  • 49 Messiers
  • 20 NGC, IC, Collinder, etc., objects
  • 4 double stars (counting Epsilon Lyrae only once)
  • 4 asterisms (DeLano 1, the Engagement Ring around Polaris, the Heart around Sadr, and Kemble’s Cascade)
  • 3 planets (Venus, Jupiter, Mars)

So about 80 things in the sky, not counting the numerous shooting stars, which we noted every few minutes all night long. That is by far the most things I’ve seen in one evening when I wasn’t doing a Messier Marathon. But we weren’t rushing or trying to get through a ton of objects, we were just basically out for a spin, and if you cruise around the sky for 9 hours, you are going to end up seeing a lot.

Lessons

I came away from the evening with a couple of firm directions for future observing.

First, I don’t think I logged anything that I hadn’t seen before (DeLano 1 excepted!), but I saw a lot of stuff that I had forgotten about, like NGC 7789. Most of these were things that I had visited in the course of doing one or another Astronomical League observing program. That’s great because those programs have helped me to learn the sky, and they’ve introduced me to a lot of wonderful objects that I hadn’t seen before. But now that I know the sky, I need to go back and re-observe those things and spend a little more time with them. This is especially true of the many beautiful clusters on the Deep Sky Binocular observing list–I am ashamed to say that there are many of those that I still have not visited with a telescope. So even my terra cognita holds some wonderful things waiting to be rediscovered.

Second, I need to go south (in the sky)! Here’s some relevant math: the Salton Sea campgrounds are at about 33 degrees north latitude. That means that Polaris is 33 degrees above the northern horizon, the celestial equator is 57 degrees above the southern horizon, and with no intervening landforms or atmosphere I should be able to see down to -57 degrees declination when I look south. Now, in practice the near-horizon haze makes the last few degrees pretty worthless. But I have seen the globular cluster Omega Centauri with my naked eyes from the Salton Sea. At -47 degrees declination, it never gets more than 10 degrees from the horizon. If it’s naked-eye visible that low under good conditions, then binoculars and telescopes will reveal much more at the same declination, and maybe even a little lower.

In practice, I have explored almost none of that southern expanse. I am used to thinking of the Silver Coin galaxy as a far southern object, but at -25 degrees it culminates a full 32 degrees above the horizon–more than a third of the way to the zenith! Except for sighting Omega Centauri a couple of times, I have not deliberately gone south of about -30 degrees declination (and I’ve only gotten there in the area around the “tail end” of Canis Major), which leaves a LOT of unexplored sky out there. I was fortunate to get to see most of the best of the southern hemisphere sky when I was in Uruguay in 2010 and it was amazing. Much of what I saw there is visible from here, I just haven’t looked. I need to fix that.