Archive for the ‘Emission nebula’ Category

h1

Mission 14: Three Astronomical Treats for Naked Eyes, Binoculars, and Telescopes

December 21, 2009

Mission Objectives: Bright Stars, Constellation, Open Cluster, Nebula

Equipment: Free star map, Naked eye, Binoculars, Telescope

Required Time: 10 minutes

Related Missions: Cassiopeia and the Double Cluster

Introduction: I’m in Oklahoma for the holidays. My best observation here so far didn’t require any optical aid at all. Remember last month when I was skunked in my quest to view the young crescent moon within 40 hours of new? On Thursday, December 17, the night after I got into town, I saw the 38-hour-old crescent moon in the western twilight over Oklahoma City, thus fulfilling the last requirement I had left for the Astronomical League‘s Lunar Club. I e-mailed in my completed log sheets on Saturday.

Instead of bringing a little scope with me, I borrowed back the one I had loaned to my brother. It’s a Synta MC90, another 90mm Maksutov-Cassegrain, but unlike my other little Mak it’s a short focal length, widefield scope. I got it out last night to show my nieces the waxing crescent moon, Jupiter, and the Pleiades.

Instructions: Speaking of the Pleiades (M45), they’re one of the best astronomical treats for a clear winter evening. Finding them is easy: look to the east after dark, and find a little knot of stars that looks a bit like a cooking pan. This is not the Little Dipper, although you’d be surprised at how many people think so on first spotting it. If you have a hard time finding the Pleiades, look for the 3/M/W of Cassiopeia, head past the Double Cluster to Perseus, and follow the lower of the two sweeping lines of stars that make up that constellation; the cluster is just off the end of the line. The Pleiades are pretty to the naked eye and probably best in binoculars. All but the widest-field scopes will have a hard time putting the whole cluster in the eyepiece, and even if you manage it, it’s prettier if you can see the cluster as a cluster, with a little open space around it. So this is one of those times that–in my opinion–binoculars trump a telescope.

If you have found the Pleiades, drop straight down (east) to find a V-shaped association of stars. These are the Hyades, another open cluster, in the constellation Taurus. One leg of the V is anchored by a big red giant star, Aldebaran, whose color is obvious even to the naked eye. You can pan around the Hyades with a scope if you like, but the cluster is so big that it really demands binoculars; binos fall right into the sweet spot of putting a lot more stars in your eyes without overly narrowing the view or getting you lost.

From the Pleiades, on to the Hyades, and farther on east you come to Orion, the most magnificent constellation in the sky. Find the three bright stars in a line that form his belt, and then three dimmer stars in another line that form the sword hanging from the belt. The middle of the three stars in the sword is not a single star at all. Rather it is M42,  the Great Nebula in Orion, a vast cloud of gas and dust, dozens of light years across, which is illuminated by the bright young stars burning within.

M42 is what I call a total object: like the moon, it looks good no matter what you use to look at it, and the more you look, the better it gets. With the naked eye, the nebula it is a faintly fuzzy star at the heart of a striking and majestic constellation. With binoculars, you’ll see a bit of nebulosity set amidst the rich starfields of Orion’s sword. In a small telescope, the full glory of the nebula starts to unfold, with glowing streamers of gas and dust spread out like an eagle’s wings. The central star will split apart into a group of four, called the Trapezium. Pour on more aperture and magnification and the view just keeps getting better. If the skies are clear and steady you may pick up a couple more stars in the Trapezium, and the surrounding clouds of gas and dust will start to look like clouds, with delicate knots and swirls.

And on it goes. You are not going to exhaust M42, not in a lifetime of observing. People with telescopes that require large trailers for transport, who have seen M42 literally thousands of times in their observing careers, still gaze into the heart of the nebula for minutes and even hours at a time. The bigger the scope, the darker the skies, the longer you look, the more there is to see.

But, hey, don’t think that if you don’t have a monster scope it’s not worth looking. Remember, M42 is a total object; it looks good at any scale. If the thought of setting up a scope in the cold and dark does not appeal, at least pop outside for a five minute session with binoculars. Make it a present to yourself.

Happy holidays!

h1

Mission 7: Star clouds of Sagittarius

September 9, 2009

Mission Objectives: Globular Cluster, Open Cluster, Nebula

Equipment: Binoculars

Required Time: 5 minutes

Related Missions: Not Everyone’s Pot of Tea

Instructions: See how many deep space  objects you can see in Sagittarius with binoculars (or, if you must, a telescope). Here’s a guide:

Sagittarius again

Your job will be a lot easier if you’ve got dark skies. Here at the edge of LA County, M7, the Butterfly Cluster (M6), the Lagoon Nebula (M8), M21, M22, M24, and M25 are all fairly easy to spot with binoculars, and everything else is difficult to impossible. If don’t have dark skies and can’t get to any, at least get as much local darkness as possible. We have a little swath of lawn about 10 feet wide between the house and garage, and if I go back in there the buildings block out about half the sky, but the half they don’t obscure looks a lot darker because I can get all the local light sources (like the neighbors’ annoying security light) out of my eyes. Also, remember that pupil dilation just takes a few minutes, but full physiological dark adaptation takes an hour or so.

For my money the best thing in Sagittarius is the M24 star cloud. Go up from the lid of the ‘teapot’ to the first bright star (as indicated by one of the constellation lines in the image above). That star has a little curlique of followers trailing up and to the left. Follow to the curlique to the explosion of stars; that’s M24. It’s not really a cluster in the traditional sense. Rather, it’s a hole in the giant clouds of gas and dust that usually obscure the inner parts of the Milky Way from our view here in the galactic ‘burbs. According to Wikipedia, under optimum sky conditions (which I ain’t got) up to 1000 stars are visible through binoculars in M24. I can only see a few dozen, but it’s still pretty awesome.

Cheap bino mount

Finally, as always, the view through the binoculars will be a heck of a lot better if you can hold them steady. The best solution here is not to hold them at all, but rather to let a device hold the binos perfectly still while you just look through them. Most binoculars have a 1/4-20 socket at the front in between the objective lenses (this is usually covered by a small plastic cap and a lot of casual bino users don’t even know it’s there). You can use this socket to attach the binoculars to a monopod or tripod. Dedicated binocular tripod adapters are available online for a little as ten bucks, or you can build your own for about two. Get a small angle bracket or corner brace, a 1/4-20 wingnut to attach the bracket to the 1/4-20 bolt of the tripod (this is what you would normally screw the camera onto), and a 1/4-20 thumbscrew to attach the binos to the bracket, with maybe an extra wingnut to tighten things down.  BAM! Now you can aim and focus the binoculars, take your hands off and let the shaking settle down, and observe in shake-free comfort. It’s a qualitatively different experience from handheld binocular observing, and you will  see more.

h1

Mission 6: Not Everyone’s Pot of Tea

September 2, 2009

Mission Objectives: Constellation, Globular Cluster, Open Cluster, Nebula

Equipment: Naked eye, Binoculars, Telescope

Required Time: 5 minutes

Related Missions: Eye of the Scorpion

Instructions: Go outside shortly after dark, face south, find Antares, and to the left/east of Scorpio, look for a teapot.

Sagittarius with lines

Yes, really. The heart of Sagittarius, allegedly the Archer, looks strikingly like a teapot. Which, I think we can all agree, is a considerably less aggressive incarnation. Once you’ve spotted it, it will be hard to avoid seeing it any time you look toward that part of the sky. It’s especially easy if you can trace Scorpio–it looks like the teapot is about to pour on the scorpion’s tail. Here’s the plain version so you can practice:

Sagittarius sans lines

Sagittarius is the thick of the summer Milky Way and contains the core of the galaxy. As a result, it is just loaded with deep sky objects (DSOs)–it hosts 15 of the 110 Messier objects, more than any other constellation. It has star clusters in its hair and hanging out of its pockets. Some are open clusters, the result of relatively recent bouts of star formation (“relatively recent” here means “within the last half-billion years or so”), but many are globular clusters or “globs”, spherical micro-galaxies of up to a million stars apiece that orbit the core of the Milky Way in an extended halo.

Sagittarius also has a stunning emission nebula, M8 or the Lagoon Nebula, which is second only to the awesome Orion Nebula (M42) for Northern Hemisphere observers. Like the Orion Nebula, the Lagoon is a site of active star formation; it is lit by the young stars it contains, and more are forming even as you read this (the Lagoon Nebula is only 4100 light years away, and it is highly unlikely that the multi-million-year process of star formation has suddenly stopped since the pyramids went up).

Sagittarius DSOs

With a clear southern sky and a pair of binoculars–which have hopefully by now been warmed ever so slightly by the brilliant light of Jupiter–you can see three beautiful DSOs that illustrate three stages in the life cycle of stars and of the galaxy itself.

Globular cluster M22 is a fuzzy ball above and to the left of the teapot–I imagine it forming a right angle with the northeastern stars of the teapot lid, as shown above. Through a telescope of less than about 6 inches aperture it will likely remain a fairly fuzzy ball, but pouring on more aperture and magnification will resolve it into something approaching this (image from Wikipedia):

M22HunterWilsonM22 is full of very old main sequence stars, and astronomers estimate its age at about 12 billion years, meaning that it has been around for more than 90% of the history of the universe. Its stars are Population II, which means that they formed shortly after the universe itself, when there had been little time for successive waves of novae and supernovae to seed the universe with heavy elements. No one knows if the Population II stars have planets; if they do, they are probably gas giants and any solid bodies are probably icy and metal-poor. If life arose in this or any globular cluster, it is hard to imagine how any of it could have become starfaring or even radio-using with few or no metals. Nobody knew this back in 1974, when Arecibo sent a “Hey, how are ya?” radio message to the globular cluster M13. M13 was chosen because it is nearby and has tons of stars; somewhat ironically, those stars are the least likely to have civilizations capable of receiving the message or responding (which may be a good thing, if you take a pessimistic view of the likely intentions of technologically superior species).

Closer to us in time of origin is the open cluster M7. It seems to me to form the right wing of an extended kite shape that is otherwise made up of the three stars that form the teapot spout. This bright ball of about 80 stars is about a thousand light years away and its oldest members are about 220 million years old–about 2% the age of those in M22. It is sobering to realize that these cosmic youngsters formed about the time that the first mammals and the first dinosaurs were getting up and running in the Late Triassic Period.

Youngest of all is M8, the aforementioned Lagoon Nebula, which sits right above the spout of the teapot like a tiny puff of steam. In cosmic terms, we’re catching M8 in the act of giving birth. A few tens of millions of years ago it was just another cloud of cosmic flotsam and probably neither bright nor particular pretty. Now it is lit from within, like a paper lantern, by its stellar offspring. In another 200 million years, M8 may look like M7 does today, with all of its ethereal clouds of gas and dust either consumed or blown away by the brash young stars that are even now forming at its heart.

So grab those binos and go see the universe–a stellar nursery (M8), primary school (M7), and retirement community (M22) await. If Jupiter blew your socks off, have a look at M22 and remember that you are looking at stars that are almost three times as old as our solar system. How often do  you get to see something 12 billion years old? Not often, I’ll wager!

…or rather, see these things if you can. There’s a reason that Sagittarius is not everyone’s pot of tea. Like Scorpio, it’s a fairly southerly constellation, which means it never gets very far above the horizon, especially for folks who live up north. Here’s what it looks like from southern England:

Sagittarius from EnglandSo if you’re farther north than about the 40th parallel, you’re probably hosed. You’ll need a clear southern horizon, sans trees, mountains, and especially the light domes of our myriad cities to get a good look. Still, give it a shot–letting the light of 70,000 12-billion-year old stars–photons that have been in transit since the end of the last ice age–fall on your retinas is worth a little effort.

Follow

Get every new post delivered to your Inbox.

Join 90 other followers